

Deciding first-order formulas involving univariate mixed trigonometric-polynomials

Rizeng Chen

xiaxueqaq@stu.pku.edu.cn

Bican Xia

xbc@math.pku.edu.cn

School of Mathematical Sciences, Peking University, China

July 26, 2023

Authors

Author 1: Rizeng Chen
(pronounced as "ReeTseng
Chern")

I am Rizeng Chen, the people on the left and I am currently a second-year PhD candidate under the supervision of Prof. Xia.

Author 2: Bican Xia
(pronounced as "BeeChan
Shia")

① Problem

② Our Result

③ Implementation

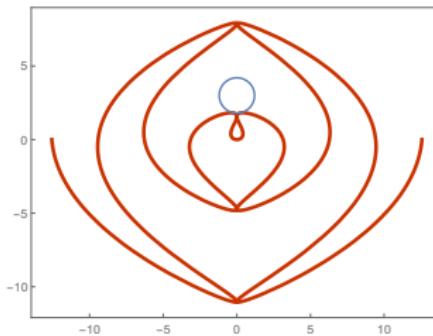
4 Conclusion & Future Work

Introduction - The Intersection Problem

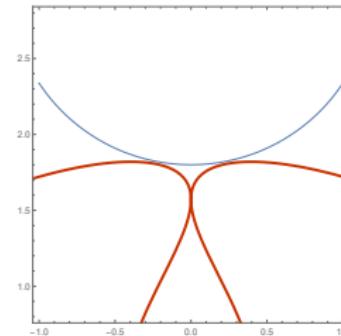
- Consider the parametric curve $C_1: \begin{cases} x(t) = t \cos^2 t \\ y(t) = t \sin t \end{cases}$ and the circle $C_2: x^2 + (y - 3)^2 = \left(\frac{6}{5}\right)^2$. Show that $C_1 \cap C_2 = \emptyset$.

Introduction - The Intersection Problem

- Consider the parametric curve C_1 : $\begin{cases} x(t) = t \cos^2 t \\ y(t) = t \sin t \end{cases}$ and the circle C_2 : $x^2 + (y - 3)^2 = \left(\frac{6}{5}\right)^2$. Show that $C_1 \cap C_2 = \emptyset$.
- This can be very hard for other methods (a numerical method for instance) because C_1 and C_2 are very close to each other, see below.



(a) Curve C_1 for $t \in (-4\pi, 4\pi)$ in red and circle C_2 in blue;



(b) Zoom in of the left graph, they nearly intersect

Figure 3: Curve C_1 and C_2

Introduction - The Intersection Problem

- Consider the parametric curve C_1 :
$$\begin{cases} x(t) = t \cos^2 t \\ y(t) = t \sin t \end{cases}$$
 and the circle C_2 : $x^2 + (y - 3)^2 = (\frac{6}{5})^2$. Show that $C_1 \cap C_2 = \emptyset$.
- We can translate the problem into a first-order formula:

$$(\exists t)((t \cos^2 t)^2 + (t \sin t - 3)^2 - (\frac{6}{5})^2 = 0).$$

Introduction - The Intersection Problem

- Consider the parametric curve C_1 :
$$\begin{cases} x(t) = t \cos^2 t \\ y(t) = t \sin t \end{cases}$$
 and the circle C_2 : $x^2 + (y - 3)^2 = (\frac{6}{5})^2$. Show that $C_1 \cap C_2 = \emptyset$.
- We can translate the problem into a first-order formula:

$$(\exists t)((t \cos^2 t)^2 + (t \sin t - 3)^2 - (\frac{6}{5})^2 = 0).$$

- How can we decide if this is true or false?

Problem Statement

• Definition (Mixed Trigonometric-Polynomial)

A (rational coefficient, univariate) **mixed trigonometric-polynomial** (abbrev. MTP) is a function $f : \mathbb{R} \rightarrow \mathbb{R}$ that can be written as a rational coefficient polynomial in x , $\sin x$ and $\cos x$. That is $f(x) = \varphi(x, \sin x, \cos x)$ for some $\varphi \in \mathbb{Q}[x, y, z]$.

Problem Statement

- **Definition (Mixed Trigonometric-Polynomial)**

A (rational coefficient, univariate) **mixed trigonometric-polynomial** (abbrev. MTP) is a function $f : \mathbb{R} \rightarrow \mathbb{R}$ that can be written as a rational coefficient polynomial in x , $\sin x$ and $\cos x$. That is $f(x) = \varphi(x, \sin x, \cos x)$ for some $\varphi \in \mathbb{Q}[x, y, z]$.

- **The Decision Problem**

The atoms in the first-order theory of MTPs are of the form $f \triangleright 0$, where f is an MTP, $\triangleright \in \{<, =, >, \neq, \leq, \geq\}$. A quantifier-free sentence $\Psi(x)$ is a boolean combination of these atoms. A closed sentence is a quantified sentence $(\forall x)\Psi(x)$ or $(\exists x)\Psi(x)$.

Is there an **algorithm to decide** whether a closed sentence $\Phi(x) = (Qx)\Psi(x)$ ($Q \in \{\forall, \exists\}$) is true or false?

A Brief History

- **Tarski (1951)** showed that the theory over a real closed field is decidable (polynomial equations and inequalities).

A Brief History

- **Tarski (1951)** showed that the theory over a real closed field is decidable (polynomial equations and inequalities).
- **Lou van den Dries (1986)** proved that the real exponential field does not admit quantifier elimination.

A Brief History

- Tarski (1951) showed that the theory over a real closed field is decidable (polynomial equations and inequalities).
- Lou van den Dries (1986) proved that the real exponential field does not admit quantifier elimination.
- Macintyre & Wilkie (1996) showed that if a conjecture in transcendental number theory is true (Schanuel's Conjecture), then the theory of the real exponential field is decidable.

A Brief History

- Tarski (1951) showed that the theory over a real closed field is decidable (polynomial equations and inequalities).
- Lou van den Dries (1986) proved that the real exponential field does not admit quantifier elimination.
- Macintyre & Wilkie (1996) showed that if a conjecture in transcendental number theory is true (Schanuel's Conjecture), then the theory of the real exponential field is decidable.
- Richardson (1969) proved that the general theory containing composition of polynomials, $\exp x$ and $\sin x$ with two extra constants $\log 2$ and π is **undecidable**.

A Brief History

- Tarski (1951) showed that the theory over a real closed field is decidable (polynomial equations and inequalities).
- Lou van den Dries (1986) proved that the real exponential field does not admit quantifier elimination.
- Macintyre & Wilkie (1996) showed that if a conjecture in transcendental number theory is true (Schanuel's Conjecture), then the theory of the real exponential field is decidable.
- Richardson (1969) proved that the general theory containing composition of polynomials, $\exp x$ and $\sin x$ with two extra constants $\log 2$ and π is **undecidable**.
- The undecidability result was later improved by Caviness (1970) and Wang (1974).

A Brief History (continued)

- **Laczkovich (2003)** showed even more, he proved that the ring generated by functions x , $\sin(x^n)$ and $\sin(x \sin(x^n))$ ($n = 1, 2, \dots$) is undecidable over the reals.

A Brief History (continued)

- **Laczkovich (2003)** showed even more, he proved that the ring generated by functions x , $\sin(x^n)$ and $\sin(x \sin(x^n))$ ($n = 1, 2, \dots$) is undecidable over the reals.
- **Achatz, McCallum and Weispfenning (2008)** presented an algorithm to decide polynomial-exponential problems. Later they generalized this idea to the logarithmic function and the inverse tangent function.

A Brief History (continued)

- **Laczkovich (2003)** showed even more, he proved that the ring generated by functions x , $\sin(x^n)$ and $\sin(x \sin(x^n))$ ($n = 1, 2, \dots$) is undecidable over the reals.
- **Achatz, McCallum and Weispfenning (2008)** presented an algorithm to decide polynomial-exponential problems. Later they generalized this idea to the logarithmic function and the inverse tangent function.
- At the same time, **Strzeboński (2008)** studied the real root isolation of exp-log functions. Then he extended the result to tame elementary functions and exp-log-arctan functions. His results relied on Schanuel's Conjecture.

A Brief History (continued)

- **Laczkovich (2003)** showed even more, he proved that the ring generated by functions x , $\sin(x^n)$ and $\sin(x \sin(x^n))$ ($n = 1, 2, \dots$) is undecidable over the reals.
- **Achatz, McCallum and Weispfenning (2008)** presented an algorithm to decide polynomial-exponential problems. Later they generalized this idea to the logarithmic function and the inverse tangent function.
- At the same time, **Strzeboński (2008)** studied the real root isolation of exp-log functions. Then he extended the result to tame elementary functions and exp-log-arctan functions. His results relied on Schanuel's Conjecture.
- Recently, **Chen et al. (2022)** gave an algorithm to isolate the real roots of MTP.

Problem
ooooo

Our Result
●oooooooooooo

Implementation
ooooooo

Conclusion & Future Work
ooo

① Problem

② Our Result

③ Implementation

④ Conclusion & Future Work

The Decidability of the Univariate MTP Theory

Recall that we are concerned about MTPs. In our paper, we prove that the first-order theory of univariate MTP is, **surprisingly unconditionally decidable**.

Theorem (ISSAC '23, Chen & Xia, Cor. 4.3)

The first-order theory of univariate MTPs is decidable.

Problem
ooooo

Our Result
oo●oooooooooooo

Implementation
ooooooo

Conclusion & Future Work
ooo

Reduction I

- Strategy: **Reduce to a decidable problem.**

Problem
ooooo

Our Result
oo●oooooooooooo

Implementation
ooooooo

Conclusion & Future Work
ooo

Reduction I

- Strategy: Reduce to a decidable problem.
- Expressions vs. Functions

Reduction I

- Strategy: Reduce to a decidable problem.
- Expressions vs. Functions. e.g. $\sin^2 x + \cos^2 x = 1$

Reduction I

- Strategy: Reduce to a decidable problem.
- Expressions vs. Functions. e.g. $\sin^2 x + \cos^2 x = 1$
- There is a ring homomorphism

$$\varphi : \mathbb{Q}[x, \sin x, \cos x] \rightarrow \mathbb{Q}\left[\frac{x}{2}, \tan \frac{x}{2}\right]_{1+\tan^2 \frac{x}{2}}$$
$$x \mapsto 2 \cdot \frac{x}{2}, \sin x \mapsto \frac{2 \tan \frac{x}{2}}{1+\tan^2 \frac{x}{2}}, \cos x \mapsto \frac{1-\tan^2 \frac{x}{2}}{1+\tan^2 \frac{x}{2}}.$$

We call $\varphi(f)$ the canonical form of an MTP f .

Reduction I

- Strategy: Reduce to a decidable problem.
- Expressions vs. Functions. e.g. $\sin^2 x + \cos^2 x = 1$
- There is a ring homomorphism

$$\varphi : \mathbb{Q}[x, \sin x, \cos x] \rightarrow \mathbb{Q}\left[\frac{x}{2}, \tan \frac{x}{2}\right]_{1+\tan^2 \frac{x}{2}}$$

$$x \mapsto 2 \cdot \frac{x}{2}, \sin x \mapsto \frac{2 \tan \frac{x}{2}}{1+\tan^2 \frac{x}{2}}, \cos x \mapsto \frac{1-\tan^2 \frac{x}{2}}{1+\tan^2 \frac{x}{2}}.$$

We call $\varphi(f)$ the canonical form of an MTP f .

- E.g. $\sin^2 x + \cos^2 x = \frac{(2 \tan \frac{x}{2})^2 + (1-\tan^2 \frac{x}{2})^2}{(1+\tan^2 \frac{x}{2})^2} = \frac{(1+\tan^2 \frac{x}{2})^2}{(1+\tan^2 \frac{x}{2})^2} = 1$.
- It is always safe to consider only the numerator of the canonical form, because the denominator $(1 + \tan^2 \frac{x}{2})^d > 0$.

Reduction II

- The next reduction comes from some basic **real algebraic geometry**.

Theorem

Given a bivariate polynomial $g \in \mathbb{R}[x, y]$ and g_0 is the square-free part of it, let M be an upper bound for all real roots $\text{lc}_y(g_0) = 0$ and $\text{discr}_y(g_0) = 0$. Then there is an integer $r \geq 0$ such that for all $x_0 > M$: $g(x_0, Y) = 0$ has exactly r distinct real roots in Y . Let $y_i(x)$ be the i -th root of $g(x, Y) = 0$ ($1 \leq i \leq r$, roots are numbered in the ascending order), then $y_i(x)$ is an algebraic function.

Reduction II (continued)

- Roughly speaking, this theorem says that **the number of real roots** of a 1-parameter and 1-unknown equation **is a constant** when the parameter is sufficiently large. Also the **real roots are algebraic functions** with respect to the parameter.

Reduction II (continued)

- Roughly speaking, this theorem says that **the number of real roots** of a 1-parameter and 1-unknown equation **is a constant** when the parameter is sufficiently large. Also the **real roots are algebraic functions** with respect to the parameter.
- This allows us to reduce solving $g(x, \tan x) = 0$ to solving $\begin{cases} g(x, y) = 0 \\ y = \tan x \end{cases}$, then to solving $y_i(x) = \tan x$ for sufficiently large x .

Reduction II (continued)

- Roughly speaking, this theorem says that **the number of real roots** of a 1-parameter and 1-unknown equation **is a constant** when the parameter is sufficiently large. Also the **real roots are algebraic functions** with respect to the parameter.
- This allows us to reduce solving $g(x, \tan x) = 0$ to solving $\begin{cases} g(x, y) = 0 \\ y = \tan x \end{cases}$, then to solving $y_i(x) = \tan x$ for sufficiently large x .
- This is, in fact equivalent to **finding the intersections of the graphs** of $y_i(x)$ and $\tan x$.

Reduction II (continued)

- Roughly speaking, this theorem says that **the number of real roots** of a 1-parameter and 1-unknown equation **is a constant** when the parameter is sufficiently large. Also the **real roots are algebraic functions** with respect to the parameter.
- This allows us to reduce solving $g(x, \tan x) = 0$ to solving $\begin{cases} g(x, y) = 0 \\ y = \tan x \end{cases}$, then to solving $y_i(x) = \tan x$ for sufficiently large x .
- This is, in fact equivalent to **finding the intersections of the graphs** of $y_i(x)$ and $\tan x$.
- Some pictures could be helpful.

Reduction II (explanation)

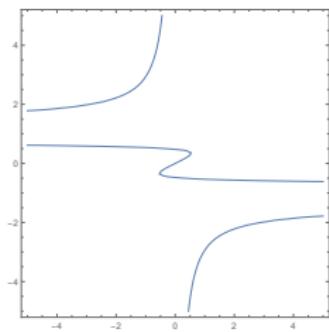


Figure 4: Locus of $g(x, y) = 10xy^8 - 40xy^6 + 60xy^4 - 40xy^2 + 10x + 20y^7 - 28y^5 + 92y^3 - 20y = 0$

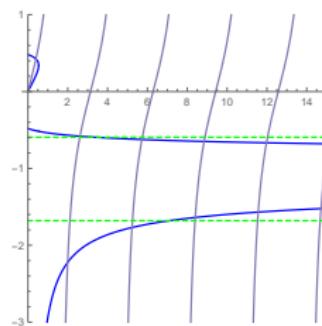


Figure 5: Local picture of $g(x, y) = 0$ and $y = \tan x$

In this example, $g(x, y) = 0$ gives two **algebraic functions** $y_1(x)$ and $y_2(x)$ that satisfy $g(x, y_i(x)) = 0$ for large x , and the **solutions** to $g(x, \tan x) = 0$ correspond to the **intersections** of $y = y_i(x)$ and $y = \tan x$.

Reduction III

- How to find the solution to $y_i(x) = \tan x$?

Reduction III

- How to find the solution to $y_i(x) = \tan x$?
- Typical **numerical** method:

Reduction III

- How to find the solution to $y_i(x) = \tan x$?
- Typical **numerical** method:

Reduction III

- How to find the solution to $y_i(x) = \tan x$?
- Typical **numerical** method: **Fixed-Point Iteration**.
- Suppose we want to solve $f(x) = x$:

Reduction III

- How to find the solution to $y_i(x) = \tan x$?
- Typical **numerical** method: **Fixed-Point Iteration**.
- Suppose we want to solve $f(x) = x$:
 - Randomly pick some x_0 .

Reduction III

- How to find the solution to $y_i(x) = \tan x$?
- Typical **numerical** method: **Fixed-Point Iteration**.
- Suppose we want to solve $f(x) = x$:
 - Randomly pick some x_0 .
 - $x_1 = f(x_0)$

Reduction III

- How to find the solution to $y_i(x) = \tan x$?
- Typical **numerical** method: **Fixed-Point Iteration**.
- Suppose we want to solve $f(x) = x$:
 - Randomly pick some x_0 .
 - $x_1 = f(x_0)$
 - $x_2 = f(x_1)$

Reduction III

- How to find the solution to $y_i(x) = \tan x$?
- Typical **numerical** method: **Fixed-Point Iteration**.
- Suppose we want to solve $f(x) = x$:
 - Randomly pick some x_0 .
 - $x_1 = f(x_0)$
 - $x_2 = f(x_1)$
 - ...

Reduction III

- How to find the solution to $y_i(x) = \tan x$?
- Typical **numerical** method: **Fixed-Point Iteration**.
- Suppose we want to solve $f(x) = x$:
 - Randomly pick some x_0 .
 - $x_1 = f(x_0)$
 - $x_2 = f(x_1)$
 - ...
- If this iteration converges, then the limit is a fixed point.

Reduction III - Contraction Mapping Associated with an Alg. Func.

- In our case, **finding roots** of $\tan x = y_i(x)$ in $(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2})$ is equivalent to **finding fixed points** of $x = \arctan y_i(x) + k\pi$.

Reduction III - Contraction Mapping Associated with an Alg. Func.

- In our case, **finding roots** of $\tan x = y_i(x)$ in $(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2})$ is equivalent to **finding fixed points** of $x = \arctan y_i(x) + k\pi$.
- This leads to the following definition:

Definition (ISSAC '23, Chen & Xia, Def. 3.1)

Let k be a positive integer and let f be an algebraic function. The **k -th contraction mapping $T_{f,k}$ associated with f** is defined to be:

$$T_{f,k} : \begin{matrix} [k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}] \\ x \end{matrix} \rightarrow \begin{matrix} [k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}] \\ \arctan(f(x)) + k\pi. \end{matrix}$$

We use notation $T_{f,k}^{(m)}$ to denote the m -times composition of $T_{f,k}$ with itself:

$$T_{f,k}^{(m)} := \overbrace{T_{f,k} \circ \cdots \circ T_{f,k}}^{\text{m fold}}.$$

When f is clear, it can be omitted from the notation: T_k and $T_k^{(m)}$.

Reduction III - Contraction Mapping Associated with an Alg. Func. (cont'd)

Here are some examples showing what our new definition is.

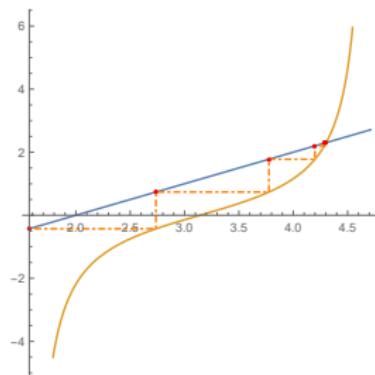


Figure 6: $f = x - 2$, $k = 1$

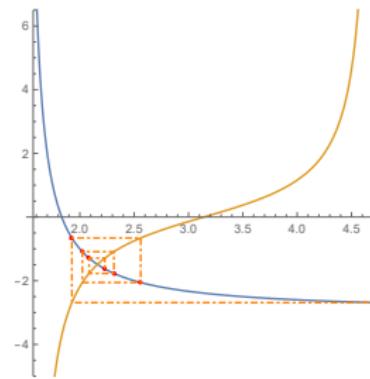


Figure 7: $f = \frac{1}{x-3/2} - 3$, $k = 1$

Reduction III (continued)

- Recall the Banach Fixed Point Theorem:

Reduction III (continued)

- Recall **the Banach Fixed Point Theorem**:
- A contraction mapping defined on a complete metric space admits a unique fixed point.

Reduction III (continued)

- Recall **the Banach Fixed Point Theorem**:
- A contraction mapping defined on a complete metric space admits a unique fixed point.
- Observe that $T'_{f,k}(x) = \frac{f'(x)}{1+f^2(x)} \rightarrow 0 (x \rightarrow +\infty)$.

Reduction III (continued)

- Recall **the Banach Fixed Point Theorem**:
- A contraction mapping defined on a complete metric space admits a unique fixed point.
- Observe that $T'_{f,k}(x) = \frac{f'(x)}{1+f^2(x)} \rightarrow 0 (x \rightarrow +\infty)$.
- So T_k are indeed contraction mappings and we can prove our main theorem:

Theorem (ISSAC '23, Chen & Xia, Thm. 3.3)

Let f be an algebraic function and T_k is the k -th contraction mapping associated with f . Then there exists an (effective) integer k_+ such that for all $k > k_+$: T_k has a **unique fixed point** $r \in (k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2})$, and for any initial value $x_0 \in [k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}]$, the iteration:

$$x_1 = T_k(x_0), x_2 = T_k(x_1), x_3 = T_k(x_2), \dots$$

converges to r .

Reduction III (continued)

- There is an algorithmic version of Reduction II and Reduction III, combined together.

Reduction III (continued)

- There is an algorithmic version of Reduction II and Reduction III, combined together.
- Corollary (ISSAC '23, Chen & Xia, Cor. 3.4)

Suppose $g \in \mathbb{Q}[x, t]$, then there are **effective integers** c_+, k_+ (resp. c_-, k_-) such that there are **exactly c_+** (resp. c_-) roots of $g(x, \tan x) = 0$ in $(k\pi - \frac{1}{2}\pi, k\pi + \frac{1}{2}\pi)$ for all $k > k_+$ (resp. $k < k_-$).

Reduction III (continued)

- There is an algorithmic version of Reduction II and Reduction III, combined together.
- Corollary (ISSAC '23, Chen & Xia, Cor. 3.4)

Suppose $g \in \mathbb{Q}[x, t]$, then there are **effective integers** c_+, k_+ (resp. c_-, k_-) such that there are **exactly c_+** (resp. c_-) roots of $g(x, \tan x) = 0$ in $(k\pi - \frac{1}{2}\pi, k\pi + \frac{1}{2}\pi)$ for all $k > k_+$ (resp. $k < k_-$).

- The secret of **effectiveness** comes from the fact that $|T'_{f,k}(x)| < \tau$ is captured by **purely algebraic conditions**

$$\text{res}_t\left(\frac{\partial g_i}{\partial x} \pm \tau(t^2 + 1) \frac{\partial g_i}{\partial t}, g_i\right)(x) = 0,$$

where g_i are the irreducible factors of g .

Reduction IV

- So all sufficiently large roots share a similar pattern.

Reduction IV

- So all sufficiently large roots share a similar pattern.
- It suffices to look at finitely many of them.

Reduction IV

- So all sufficiently large roots share a similar pattern.
- It suffices to look at finitely many of them.
- Theorem (ISSAC '23, Chen & Xia, Thm. 4.2)

Let $\Phi(x)$ be a quantifier-free formula in the theory of univariate MTPs. There are effective $K_-, K_+ \in \mathbb{Z}$ such that $\Phi(x)$ is true for all $x \in \mathbb{R}$ if and only if $\Phi(x)$ is true for all $x \in (2K_-\pi - \pi, 2K_+\pi + \pi)$.

Reduction IV

- So all sufficiently large roots share a similar pattern.
- It suffices to look at finitely many of them.
- Theorem (ISSAC '23, Chen & Xia, Thm. 4.2)

Let $\Phi(x)$ be a quantifier-free formula in the theory of univariate MTPs. There are effective $K_-, K_+ \in \mathbb{Z}$ such that $\Phi(x)$ is true for all $x \in \mathbb{R}$ if and only if $\Phi(x)$ is true for all $x \in (2K_-\pi - \pi, 2K_+\pi + \pi)$.

- In other words, this theorem reduces a decision problem over the reals to an equivalent problem over a bounded interval. The latter problem is already shown to be decidable by **McCallum and Weispfenning (2012)**. The decidability result is established now.

① Problem

② Our Result

③ Implementation

④ Conclusion & Future Work

Package UnivariateMTPDecisionV2

We implement the decision algorithm with Mathematica 12. Our package `UnivariateMTPDecisionV2` is available at:

[https://github.com/xiaxueqaq/MTP-decision.](https://github.com/xiaxueqaq/MTP-decision)

The Problem from the Introduction

- Consider the parametric curve C_1 :
$$\begin{cases} x(t) = t \cos^2 t \\ y(t) = t \sin t \end{cases}$$
 and the circle C_2 : $x^2 + (y - 3)^2 = (\frac{6}{5})^2$. Show that $C_1 \cap C_2 = \emptyset$.
- We can translate the problem into a first-order formula:

$$(\exists t)((t \cos^2 t)^2 + (t \sin t - 3)^2 - (\frac{6}{5})^2 = 0),$$

and solve this by our decision algorithm.

The Problem from the Introduction

- Consider the parametric curve C_1 : $\begin{cases} x(t) = t \cos^2 t \\ y(t) = t \sin t \end{cases}$ and the circle C_2 : $x^2 + (y - 3)^2 = (\frac{6}{5})^2$. Show that $C_1 \cap C_2 = \emptyset$.
- We can translate the problem into a first-order formula:

$$(\exists t)((t \cos^2 t)^2 + (t \sin t - 3)^2 - (\frac{6}{5})^2 = 0),$$

and solve this by our decision algorithm.

- $\text{In[2]:= Timing[DecideMTP[b1 == 0, \{b1\}, \{-\frac{36}{25} + t^2 \cos[t]^4 + (-3 + t \sin[t])^2\}, t, False]]}$
[计算时间] [假]

Out[2]=
 $\{0.1875, \text{False}\}$

The Problem from the Introduction

- Consider the parametric curve C_1 : $\begin{cases} x(t) = t \cos^2 t \\ y(t) = t \sin t \end{cases}$ and the circle C_2 : $x^2 + (y - 3)^2 = (\frac{6}{5})^2$. Show that $C_1 \cap C_2 = \emptyset$.
- We can translate the problem into a first-order formula:

$$(\exists t)((t \cos^2 t)^2 + (t \sin t - 3)^2 - (\frac{6}{5})^2 = 0),$$

and solve this by our decision algorithm.

- $\text{In[2]:= Timing[DecideMTP[b1 == 0, \{b1\}, \{-\frac{36}{25} + t^2 \cos[t]^4 + (-3 + t \sin[t])^2\}, t, False]]}$
[计算时间] [假]

Out[2]=
 $\{0.1875, \text{False}\}$

- The algorithm confirms that $C_1 \cap C_2 = \emptyset$ in 0.1875s.

A Problem from Automated Reasoning

- Prove that if x_0 is a positive root of $x^2 \cos x - \sin x = 0$ then $x_0 > 1$.

A Problem from Automated Reasoning

- Prove that if x_0 is a positive root of $x^2 \cos x - \sin x = 0$ then $x_0 > 1$.
- This can be formulated as

$$(\forall x) (((x^2 \cos x - \sin x = 0) \wedge (x > 0)) \implies (x - 1 > 0)).$$

A Problem from Automated Reasoning

- Prove that if x_0 is a positive root of $x^2 \cos x - \sin x = 0$ then $x_0 > 1$.
- This can be formulated as

$$(\forall x) (((x^2 \cos x - \sin x = 0) \wedge (x > 0)) \implies (x - 1 > 0)).$$

- `In[3]:= Timing[DecideMTP[((b1 == 0) \wedge (b2 > 0)) \Rightarrow (b3 > 0),`
[计算时间]
`{b1, b2, b3}, {x^2 Cos[x] - Sin[x], x, x - 1}, x]]`
[余弦] [正弦]

`Out[3]=`
`{0.078125, True}`

A Problem from Automated Reasoning

- Prove that if x_0 is a positive root of $x^2 \cos x - \sin x = 0$ then $x_0 > 1$.
- This can be formulated as

$$(\forall x) (((x^2 \cos x - \sin x = 0) \wedge (x > 0)) \implies (x - 1 > 0)).$$

- `In[3]:= Timing[DecideMTP[((b1 == 0) \wedge (b2 > 0)) \Rightarrow (b3 > 0),`
[计算时间]
`{b1, b2, b3}, {x^2 Cos[x] - Sin[x], x, x - 1}, x]]`
[余弦] [正弦]

`Out[3]=`
`{0.078125, True}`

- The algorithm proves it in 0.08s.

Experiments

In our paper, to test the algorithm, we choose 6 examples that can be formulated in the first-order language of univariate MTPs, including

- theorem proving,

Experiments

In our paper, to test the algorithm, we choose 6 examples that can be formulated in the first-order language of univariate MTPs, including

- theorem proving,
- inequalities,

Experiments

In our paper, to test the algorithm, we choose 6 examples that can be formulated in the first-order language of univariate MTPs, including

- theorem proving,
- inequalities,
- parametric curve membership problem,

Experiments

In our paper, to test the algorithm, we choose 6 examples that can be formulated in the first-order language of univariate MTPs, including

- theorem proving,
- inequalities,
- parametric curve membership problem,
- intersection of curves

Experiments

In our paper, to test the algorithm, we choose 6 examples that can be formulated in the first-order language of univariate MTPs, including

- theorem proving,
- inequalities,
- parametric curve membership problem,
- intersection of curves
-

Experiments

In our paper, to test the algorithm, we choose 6 examples that can be formulated in the first-order language of univariate MTPs, including

- theorem proving,
- inequalities,
- parametric curve membership problem,
- intersection of curves
-

Experiments

In our paper, to test the algorithm, we choose 6 examples that can be formulated in the first-order language of univariate MTPs, including

- theorem proving,
- inequalities,
- parametric curve membership problem,
- intersection of curves
-

Our algorithm succeeds in proving all sentences, and is shown to be very efficient. The results are briefly summarized in the next page.

Experiments (continued)

The experiment was conducted on a laptop that runs Windows 10 with an Intel Core i7-10750H@2.60GHz (6 Cores, 12 Threads) processor and 8 GB of RAM.

Examples	1	2	3	4	5	6
Time (s)	0.047	0.172	0.031	0.219	2.438	0.031
Quantifier	\forall	\forall	\forall	\exists	\exists	\forall
Number of MTPs	3	3	1	1	4	2
Degree*	(4,2)	(6,4)	(0,2)	(2,8)	(0,16)	(6,5)

* - The degree in x and $\tan x$ of the canonical form of the product of MTPs.

Table 1: A brief summary of the experiment

Problem
ooooo

Our Result
oooooooooooo

Implementation
oooooo

Conclusion & Future Work
●○○

① Problem

② Our Result

③ Implementation

④ Conclusion & Future Work

Conclusion

- In our paper, we prove that the first-order theory of univariate MTP is decidable, and the result does not rely on any unproven conjecture.
- Also, we implement the decision algorithm with Mathematica 12. Some experiments show that our algorithm is quite efficient.

Future Work

- Complexity?
- Is it possible to generalize to \mathbb{C} ?
- Is it possible to generalize to $\mathbb{Q}[x, \sin \alpha_1 x, \cos \alpha_1 x, \dots, \sin \alpha_n x, \cos \alpha_n x]$, where α_i are real algebraic numbers?
- ...

Thank you!

You are more than welcome to give any suggestion!