

Reduction of Transcendental Decision Problems over the Reals

Rizeng Chen

xiaxueqaq@stu.pku.edu.cn

Bican Xia

xbc@math.pku.edu.cn

School of Mathematical Sciences, Peking University, China

July 18, 2024

Authors

Author 1: Rizeng Chen
(pronounced as “ReeTseng
Chern”)

I am Rizeng Chen, the people on the left and I am currently a third-year PhD candidate under the supervision of Prof. Xia.

Author 2: Bican Xia
(pronounced as “BeeChan
Shia”)

1 Introduction

2 History

3 Reduction

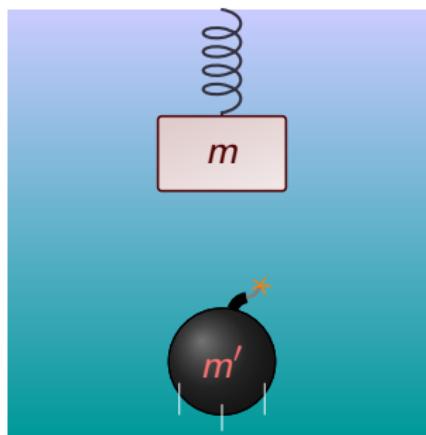
4 Proof Sketch

5 Multivariate Case

6 Implementation

Problems with Transcendental Constraints

A **mass** is attached to a **spring** in the water. A **bomb** is thrown beneath the mass. The bomb will **explode** when it hits the mass!



Question: Will the mass and the bomb collide at some time $t > 0$?

Problems with Transcendental Constraints

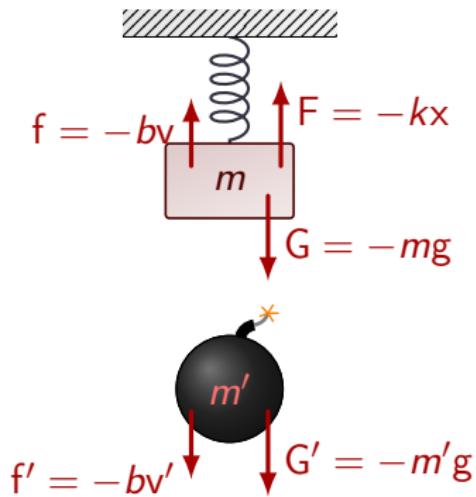


Figure 1: Free Body Diagram

Problems with Transcendental Constraints

- The **kinetic equation** of the mass?

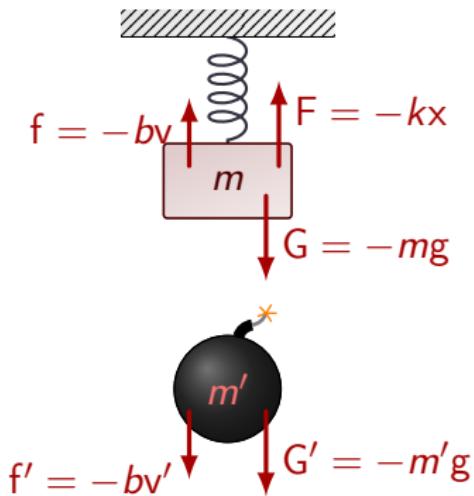


Figure 1: Free Body Diagram

Problems with Transcendental Constraints

- The **kinetic equation** of the mass?

- 1 The Gravity:
 $G = -mg$.

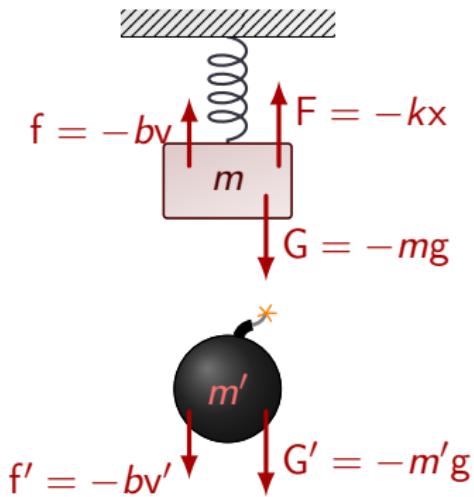
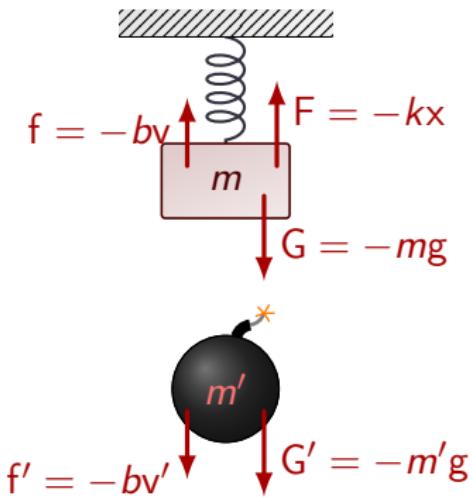


Figure 1: Free Body Diagram

Problems with Transcendental Constraints

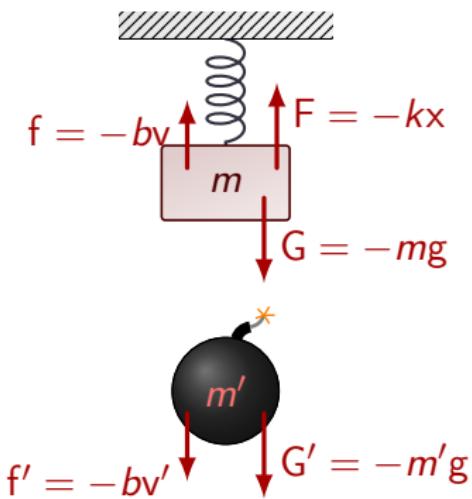
- The kinetic equation of the mass?



- ① The Gravity:
 $G = -mg$.
- ② Hooke's Law:
 $F = -kx$.

Figure 1: Free Body Diagram

Problems with Transcendental Constraints

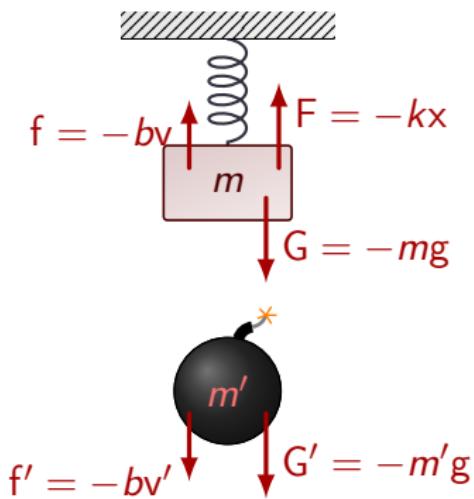


- The kinetic equation of the mass?

- 1 The Gravity:
 $G = -mg$.
- 2 Hooke's Law:
 $F = -kx$.
- 3 The Drag Force:
 $f = -bv$.

Figure 1: Free Body Diagram

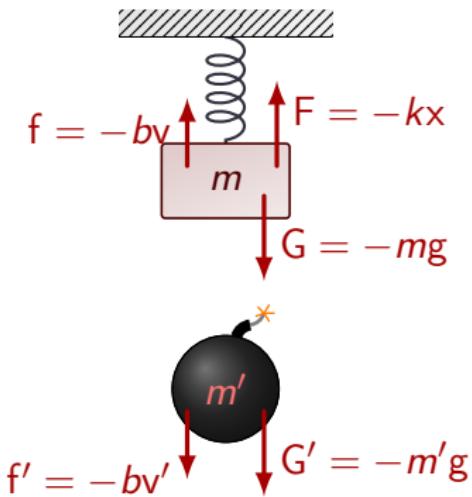
Problems with Transcendental Constraints



- The kinetic equation of the mass?
 - ① The Gravity: $G = -mg$.
 - ② Hooke's Law: $F = -kx$.
 - ③ The Drag Force: $f = -bv$.
- $m\ddot{x} = -kx - b\dot{x} - mg$.

Figure 1: Free Body Diagram

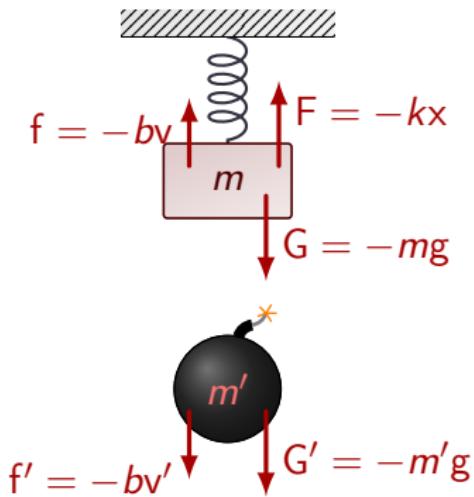
Problems with Transcendental Constraints



- The kinetic equation of the mass?
 - ① The Gravity: $G = -mg$.
 - ② Hooke's Law: $F = -kx$.
 - ③ The Drag Force: $f = -bv$.
- $m\ddot{x} = -kx - b\dot{x} - mg$.
- What about the bomb?

Figure 1: Free Body Diagram

Problems with Transcendental Constraints



- The kinetic equation of the mass?

① The Gravity:

$$G = -mg.$$

② Hooke's Law:

$$F = -kx.$$

③ The Drag Force:

$$f = -bv.$$

- $m\ddot{x} = -kx - b\dot{x} - mg.$

- What about the bomb?

① The Gravity:

$$G' = -m'g.$$

Figure 1: Free Body Diagram

Problems with Transcendental Constraints

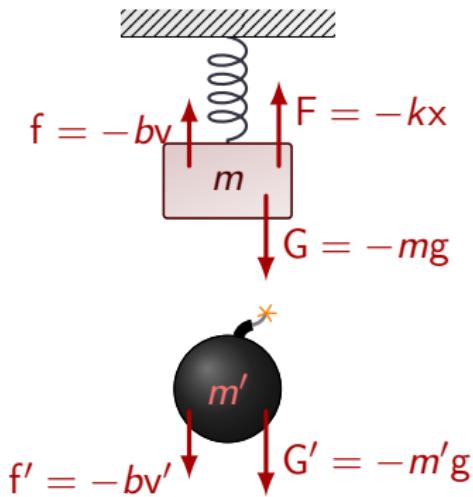


Figure 1: Free Body Diagram

- The kinetic equation of the mass?

① The Gravity:

$$G = -mg.$$

② Hooke's Law:

$$F = -kx.$$

③ The Drag Force:
 $f = -bv.$

- $m\ddot{x} = -kx - b\dot{x} - mg.$

- What about the bomb?

① The Gravity:

$$G' = -m'g.$$

② The Drag Force:
 $f' = -bv'.$

Problems with Transcendental Constraints

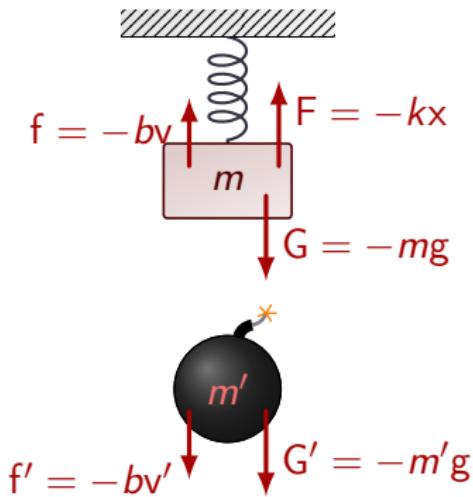


Figure 1: Free Body Diagram

- The kinetic equation of the mass?

① The Gravity:

$$G = -mg.$$

② Hooke's Law:

$$F = -kx.$$

③ The Drag Force:
 $f = -bv.$

- $m\ddot{x} = -kx - b\dot{x} - mg.$

- What about the bomb?

① The Gravity:

$$G' = -m'g.$$

② The Drag Force:
 $f' = -bv'.$

- $m'\ddot{y} = -b\dot{y} - m'g.$

Problems with Transcendental Constraints

- Suppose $m = m' = 1\text{kg}$, $k = 10\text{N/m}$, $b = 2\text{N} \cdot \text{s/m}$ and $g = 10\text{m/s}^2$.
- The initial positions are $x(0) = 0\text{m}$, $y(0) = -5\text{m}$, and the initial velocities are $\dot{x}(0) = -12\text{m/s}$ and $\dot{y}(0) = 9\text{m/s}$.

Problems with Transcendental Constraints

- Suppose $m = m' = 1\text{kg}$, $k = 10\text{N/m}$, $b = 2\text{N} \cdot \text{s/m}$ and $g = 10\text{m/s}^2$.
- The initial positions are $x(0) = 0\text{m}$, $y(0) = -5\text{m}$, and the initial velocities are $\dot{x}(0) = -12\text{m/s}$ and $\dot{y}(0) = 9\text{m/s}$.
- So the **kinetic equations** are

$$\left\{ \begin{array}{lcl} \ddot{x} & = & -2\dot{x} - 10x - 10 \\ \dot{x}(0) & = & -12 \\ x(0) & = & 0 \end{array} \right. , \left\{ \begin{array}{lcl} \ddot{y} & = & -2\dot{y} - 10 \\ \dot{y}(0) & = & 9 \\ y(0) & = & -5 \end{array} \right. .$$

Problems with Transcendental Constraints

- So the **kinetic equations** are

$$\begin{cases} \ddot{x} = -2\dot{x} - 10x - 10 \\ \dot{x}(0) = -12 \\ x(0) = 0 \end{cases}, \begin{cases} \ddot{y} = -2\dot{y} - 10 \\ \dot{y}(0) = 9 \\ y(0) = -5 \end{cases}.$$

- Solving the ODE:

$$x(t) = -\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1, \quad y(t) = -5t - 7e^{-2t} + 2.$$

Problems with Transcendental Constraints

- So the **kinetic equations** are

$$\begin{cases} \ddot{x} = -2\dot{x} - 10x - 10 \\ \dot{x}(0) = -12 \\ x(0) = 0 \end{cases}, \begin{cases} \ddot{y} = -2\dot{y} - 10 \\ \dot{y}(0) = 9 \\ y(0) = -5 \end{cases}.$$

- Solving the ODE:

$$x(t) = -\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1, \quad y(t) = -5t - 7e^{-2t} + 2.$$

- Will the bomb hit the mass?

$$(\exists t) ((t > 0) \wedge (-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2))?$$

Problems with Transcendental Constraints

- Will the bomb hit the mass?

$$(\exists t) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) ?$$

- **Transcendental constraints** naturally arise in the real world.

Problems with Transcendental Constraints

- Will the bomb hit the mass?

$$(\exists t) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) ?$$

- **Transcendental constraints** naturally arise in the real world.
- How do we handle them?

1 Introduction

2 History

3 Reduction

4 Proof Sketch

5 Multivariate Case

6 Implementation

Polynomials are easy...

- **Tarski (1951)** showed that the first-order theory over a real closed field is decidable (polynomial equations and inequalities).

But transcendental constraints are hard...

- **Macintyre & Wilkie (1996)** showed that if Schanuel's Conjecture is true, then the theory of the real exponential field is decidable.

But transcendental constraints are hard...

- Macintyre & Wilkie (1996) showed that if Schanuel's Conjecture is true, then the theory of the real exponential field is decidable.
- Schanuel's Conjecture (SC)

Suppose $z_1, \dots, z_n \in \mathbb{C}$ are linear independent over \mathbb{Q} , then

$$\text{tr.deg } \mathbb{Q}(z_1, \dots, z_n, e^{z_1}, \dots, e^{z_n}) \geq n$$

But transcendental constraints are hard...

- **Macintyre & Wilkie (1996)** showed that if Schanuel's Conjecture is true, then the theory of the real exponential field is decidable.
- **Achatz, McCallum and Weispfenning (2008)** presented an algorithm to decide polynomial-exponential problems (later generalized to $\ln x$ and $\arctan x$).

But transcendental constraints are hard...

- Macintyre & Wilkie (1996) showed that if Schanuel's Conjecture is true, then the theory of the real exponential field is decidable.
- Achatz, McCallum and Weispfenning (2008) presented an algorithm to decide polynomial-exponential problems (later generalized to $\ln x$ and $\arctan x$).
- At the same time, Strzeboński (2008) studied the real root isolation of exp-log functions (then extended to tame elementary functions and exp-log-arctan functions).

Trigonometric functions are even harder...

- Richardson (1969) proved that the general theory containing composition of polynomials, $\exp x$ and $\sin x$ with two extra constants $\log 2$ and π is **undecidable**.

Trigonometric functions are even harder...

- Richardson (1969) proved that the general theory containing composition of polynomials, $\exp x$ and $\sin x$ with two extra constants $\log 2$ and π is **undecidable**.
- The undecidability result was later improved by Caviness (1970) and Wang (1974).

Trigonometric functions are even harder...

- Richardson (1969) proved that the general theory containing composition of polynomials, $\exp x$ and $\sin x$ with two extra constants $\log 2$ and π is **undecidable**.
- The undecidability result was later improved by Caviness (1970) and Wang (1974).
- Laczkovich (2003) showed even more, he proved that the ring generated by functions x , $\sin(x^n)$ and $\sin(x \sin(x^n)))$ ($n = 1, 2, \dots$) is undecidable over the reals.

Trigonometric functions are even harder...

- Richardson (1969) proved that the general theory containing composition of polynomials, $\exp x$ and $\sin x$ with two extra constants $\log 2$ and π is **undecidable**.
- The undecidability result was later improved by Caviness (1970) and Wang (1974).
- Laczkovich (2003) showed even more, he proved that the ring generated by functions x , $\sin(x^n)$ and $\sin(x \sin(x^n))$ ($n = 1, 2, \dots$) is undecidable over the reals.
- It is shown in Chen and Xia (2023) that the theory of univariate mixed trigonometric-polynomials (MTP) is **surprisingly decidable**.

1 Introduction

2 History

3 Reduction

4 Proof Sketch

5 Multivariate Case

6 Implementation

Bounded v.s. Unbounded

- It is observed that when problems involving trigonometric functions are only considered on a **bounded domain**, they become much **easier to solve**.

Bounded v.s. Unbounded

- It is observed that when problems involving trigonometric functions are only considered on a **bounded domain**, they become much **easier to solve**.
- In fact, **Macintyre (2016)** showed that the theory $\mathbb{R}_{\exp, \sin \upharpoonright [0, n], \cos \upharpoonright [0, n]}$ is decidable if Schanuel's Conjecture is true.

Bounded v.s. Unbounded

- It is observed that when problems involving trigonometric functions are only considered on a **bounded domain**, they become much **easier to solve**.
- In fact, **Macintyre (2016)** showed that the theory $\mathbb{R}_{\exp, \sin \restriction [0, n], \cos \restriction [0, n]}$ is decidable if Schanuel's Conjecture is true.
- This observation is also supported by **Strzeboński (2009)** and **McCallum and Weispfenning (2012)**.

Bounded v.s. Unbounded

- It is observed that when problems involving trigonometric functions are only considered on a **bounded domain**, they become much **easier to solve**.
- In fact, **Macintyre (2016)** showed that the theory $\mathbb{R}_{\exp, \sin \upharpoonright [0, n], \cos \upharpoonright [0, n]}$ is decidable if Schanuel's Conjecture is true.
- This observation is also supported by **Strzeboński (2009)** and **McCallum and Weispfenning (2012)**.
- Hence, a **reduction** from the unbounded case to the bounded case should be **favorable**.

Our new result - The Reduction Theorem

- Suppose S is a subring of $C^\omega(\mathbb{R}) = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is analytic}\}$ that is

Our new result - The Reduction Theorem

- Suppose S is a subring of $C^\omega(\mathbb{R}) = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is analytic}\}$ that is
 - ① Closed under differentiation

Our new result - The Reduction Theorem

- Suppose S is a subring of $C^\omega(\mathbb{R}) = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is analytic}\}$ that is
 - ① Closed under differentiation
 - ② Every $f \in S \setminus \{0\}$ has only **finitely many real zeros** (o-minimal)

Our new result - The Reduction Theorem

- Suppose S is a subring of $C^\omega(\mathbb{R}) = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is analytic}\}$ that is
 - ① Closed under differentiation
 - ② Every $f \in S \setminus \{0\}$ has only **finitely many real zeros** (o-minimal)
 - ③ The real roots of $f \in S$ can be **effectively located**.

Our new result - The Reduction Theorem

- Suppose S is a subring of $C^\omega(\mathbb{R}) = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is analytic}\}$ that is
 - ① **Closed under differentiation**
 - ② Every $f \in S \setminus \{0\}$ has only **finitely many real zeros** (o-minimal)
 - ③ The real roots of $f \in S$ can be **effectively located**.
- Theorem (ISSAC '24, Chen & Xia Thm. 3.1)

Let $f_i \in S[\sin x, \cos x]$ for $i = 1, \dots, s$, then there are effective bounds $N, M \in \mathbb{R}$ such that any quantifier-free formula $\varphi(x)$ whose atoms are of the form $f_i \triangleright 0$ is true for all $x \in \mathbb{R}$ if and only if $\varphi(x)$ is true for all $x \in [N, M]$.

Our new result - The Reduction Theorem

- Suppose S is a subring of $C^\omega(\mathbb{R}) = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is analytic}\}$ that is
 - ① **Closed under differentiation**
 - ② Every $f \in S \setminus \{0\}$ has only **finitely many real zeros** (o-minimal)
 - ③ The real roots of $f \in S$ can be **effectively located**.
- Theorem (ISSAC '24, Chen & Xia Thm. 3.1)

Let $f_i \in S[\sin x, \cos x]$ for $i = 1, \dots, s$, then there are effective bounds $N, M \in \mathbb{R}$ such that any quantifier-free formula $\varphi(x)$ whose atoms are of the form $f_i \triangleright 0$ is true for all $x \in \mathbb{R}$ if and only if $\varphi(x)$ is true for all $x \in [N, M]$.

- Our ISSAC'23 result can be directly derived from this by setting $S = \mathbb{Q}[x]$.

Applications of the Reduction Theorem

The Reduction Theorem provides a **general framework** for designing decision procedures. As a consequence, the following rings are **decidable** (SC may be needed).

- $\mathbb{Q}[x][\sin x, \cos x]$.

Applications of the Reduction Theorem

The Reduction Theorem provides a **general framework** for designing decision procedures. As a consequence, the following rings are **decidable** (SC may be needed).

- $\mathbb{Q}[x][\sin x, \cos x]$.
- $S[\sin x, \cos x]$, where S is the ring of exp-log-arctan functions.

Applications of the Reduction Theorem

The Reduction Theorem provides a **general framework** for designing decision procedures. As a consequence, the following rings are **decidable** (SC may be needed).

- $\mathbb{Q}[x][\sin x, \cos x]$.
- $S[\sin x, \cos x]$, where S is the ring of exp-log-arctan functions.
- $\mathbb{R}_{\text{alg}}[x, e^{\alpha_1 x}, e^{\alpha_2 x}, \dots, e^{\alpha_s x}][\sin x, \cos x]$.

Applications of the Reduction Theorem

The Reduction Theorem provides a **general framework** for designing decision procedures. As a consequence, the following rings are **decidable** (SC may be needed).

- $\mathbb{Q}[x][\sin x, \cos x]$.
- $S[\sin x, \cos x]$, where S is the ring of exp-log-arctan functions.
- $\mathbb{R}_{\text{alg}}[x, e^{\alpha_1 x}, e^{\alpha_2 x}, \dots, e^{\alpha_s x}][\sin x, \cos x]$.

As a corollary, the **reachability problem** of a linear differential system $\dot{x}(t) = Ax(t)$ is decidable, if the imaginary part of **eigenvalues** of A spans a **1-dimensional space** over \mathbb{Q} .

① Introduction

② History

③ Reduction

④ Proof Sketch

⑤ Multivariate Case

⑥ Implementation

Unifying $\sin x$ and $\cos x$ by substitution

- Since $\sin x$ and $\cos x$ are **not algebraically independent** ($\sin^2 x + \cos^2 x = 1$), it is more convenient to **eliminate them using $\tan \frac{x}{2}$** .

Unifying $\sin x$ and $\cos x$ by substitution

- Since $\sin x$ and $\cos x$ are **not algebraically independent** ($\sin^2 x + \cos^2 x = 1$), it is more convenient to **eliminate them using $\tan \frac{x}{2}$** .
- This is the **canonical form** of $f \in S[\sin x, \cos x]$:

$$\begin{aligned}\sigma : S[\sin x, \cos x] &\rightarrow S[\tan \frac{x}{2}]_{1+\tan^2 \frac{x}{2}} \\ \sin x &\mapsto \frac{2 \tan \frac{x}{2}}{1+\tan^2 \frac{x}{2}}, \quad \cos x \mapsto \frac{1-\tan^2 \frac{x}{2}}{1+\tan^2 \frac{x}{2}}.\end{aligned}$$

Unifying $\sin x$ and $\cos x$ by substitution

- Since $\sin x$ and $\cos x$ are **not algebraically independent** ($\sin^2 x + \cos^2 x = 1$), it is more convenient to **eliminate them using $\tan \frac{x}{2}$** .
- This is the **canonical form** of $f \in S[\sin x, \cos x]$:

$$\begin{aligned}\sigma : S[\sin x, \cos x] &\rightarrow S[\tan \frac{x}{2}]_{1+\tan^2 \frac{x}{2}} \\ \sin x &\mapsto \frac{2 \tan \frac{x}{2}}{1+\tan^2 \frac{x}{2}}, \quad \cos x \mapsto \frac{1-\tan^2 \frac{x}{2}}{1+\tan^2 \frac{x}{2}}.\end{aligned}$$

- Notice that

$$f \triangleright 0 \Leftrightarrow \sigma(f) \triangleright 0 \Leftrightarrow (1 + \tan^2 \frac{x}{2})^\ell \sigma(f) \triangleright 0.$$

So it **suffices to consider $S[\tan \frac{x}{2}]$** instead of $S[\sin x, \cos x]$.

Unifying $\sin x$ and $\cos x$ by substitution

- Since $\sin x$ and $\cos x$ are **not algebraically independent** ($\sin^2 x + \cos^2 x = 1$), it is more convenient to **eliminate them using $\tan \frac{x}{2}$** .
- This is the **canonical form** of $f \in S[\sin x, \cos x]$:

$$\begin{aligned}\sigma : S[\sin x, \cos x] &\rightarrow S[\tan \frac{x}{2}]_{1+\tan^2 \frac{x}{2}} \\ \sin x &\mapsto \frac{2 \tan \frac{x}{2}}{1+\tan^2 \frac{x}{2}}, \quad \cos x \mapsto \frac{1-\tan^2 \frac{x}{2}}{1+\tan^2 \frac{x}{2}}.\end{aligned}$$

- Notice that

$$f \triangleright 0 \Leftrightarrow \sigma(f) \triangleright 0 \Leftrightarrow (1 + \tan^2 \frac{x}{2})^\ell \sigma(f) \triangleright 0.$$

So it **suffices to consider $S[\tan \frac{x}{2}]$** instead of $S[\sin x, \cos x]$.

- The **singularity** of $\tan \frac{x}{2}$ at $x = (2k+1)\pi$ ($k \in \mathbb{Z}$) can be **treated separately**.

Essential Ingredient From Real Algebraic Geometry

Collins (1975) proposed Cylindrical Algebraic Decomposition (CAD). The key theorem in the paper is:

Theorem (Col75, Thm. 1)

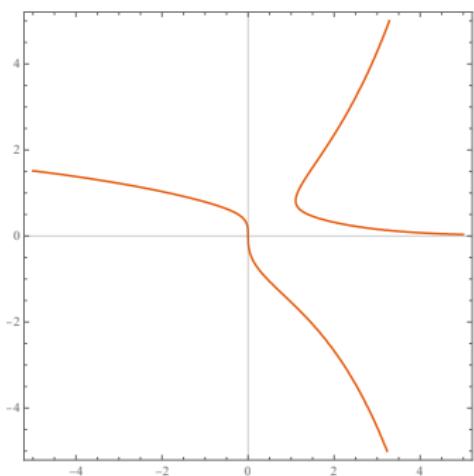
Let $f(\vec{x}; y)$ be a parametric univariate polynomial and let C be a connected parameter region.

Suppose $\text{LC}_y(f) \neq 0$ for all $\vec{x} \in C$ and the number of distinct complex roots of $f(\vec{x}; y)$ is invariant for all $\vec{x} \in C$.

Then f is delineable over C , i.e. the real roots of f are continuous functions in the parameters.

He counted the complex roots by his subresultant theory.

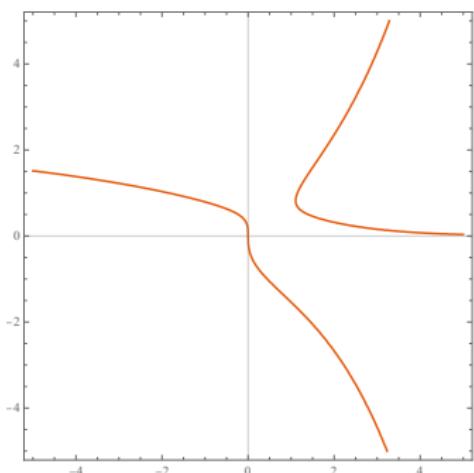
Essential Ingredient From Real Algebraic Geometry (cont'd)



- The sub-discriminants:

Figure 2: The locus of
 $f(x, y) = y^3 - (e^x - 1)y + x$

Essential Ingredient From Real Algebraic Geometry (cont'd)

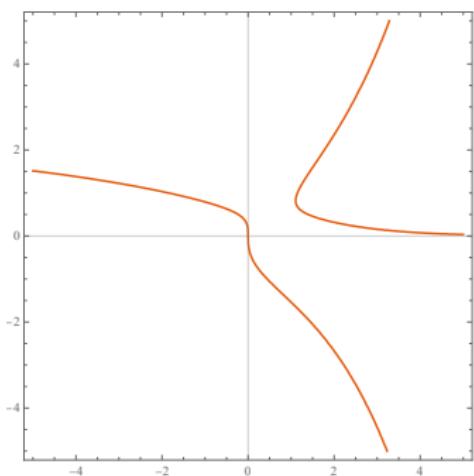


- The sub-discriminants:

① $\Delta_0 = 27x^2 - 12e^x + 12e^{2x} - 4e^{3x} + 4;$

Figure 2: The locus of
 $f(x, y) = y^3 - (e^x - 1)y + x$

Essential Ingredient From Real Algebraic Geometry (cont'd)

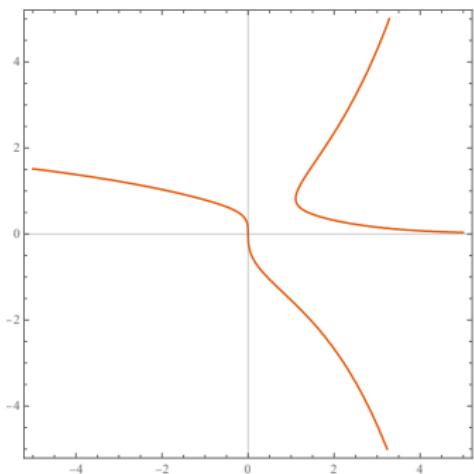


- The sub-discriminants:

- ① $\Delta_0 = 27x^2 - 12e^x + 12e^{2x} - 4e^{3x} + 4;$
- ② $\Delta_1 = 6 - 6e^x;$

Figure 2: The locus of
 $f(x, y) = y^3 - (e^x - 1)y + x$

Essential Ingredient From Real Algebraic Geometry (cont'd)



- The sub-discriminants:

- ① $\Delta_0 = 27x^2 - 12e^x + 12e^{2x} - 4e^{3x} + 4;$
- ② $\Delta_1 = 6 - 6e^x;$
- ③ $\Delta_2 = 3.$

Figure 2: The locus of
 $f(x, y) = y^3 - (e^x - 1)y + x$

Essential Ingredient From Real Algebraic Geometry (cont'd)

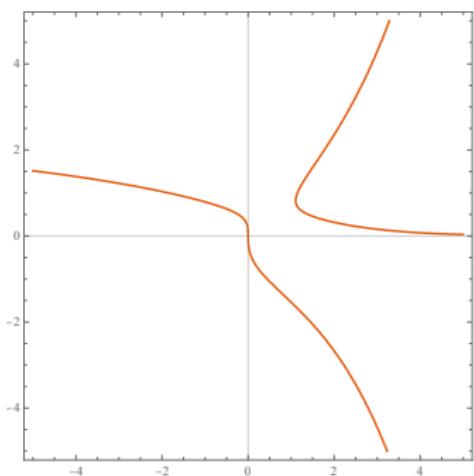


Figure 2: The locus of
 $f(x, y) = y^3 - (e^x - 1)y + x$

- The sub-discriminants:

- 1 $\Delta_0 = 27x^2 - 12e^x + 12e^{2x} - 4e^{3x} + 4;$
- 2 $\Delta_1 = 6 - 6e^x;$
- 3 $\Delta_2 = 3.$

- The real roots of

Essential Ingredient From Real Algebraic Geometry (cont'd)

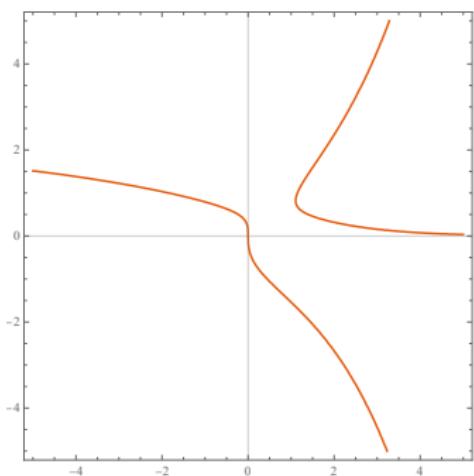


Figure 2: The locus of
 $f(x, y) = y^3 - (e^x - 1)y + x$

- The sub-discriminants:
 - ① $\Delta_0 = 27x^2 - 12e^x + 12e^{2x} - 4e^{3x} + 4;$
 - ② $\Delta_1 = 6 - 6e^x;$
 - ③ $\Delta_2 = 3.$
- The real roots of
 - ① $\Delta_0: x = 0, 1.105\dots;$

Essential Ingredient From Real Algebraic Geometry (cont'd)

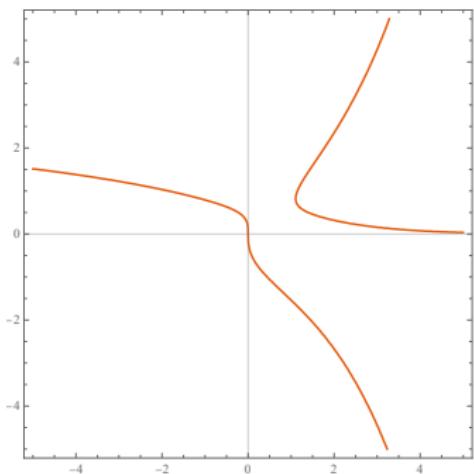


Figure 2: The locus of
 $f(x, y) = y^3 - (e^x - 1)y + x$

- The sub-discriminants:

- ① $\Delta_0 = 27x^2 - 12e^x + 12e^{2x} - 4e^{3x} + 4;$
- ② $\Delta_1 = 6 - 6e^x;$
- ③ $\Delta_2 = 3.$

- The real roots of

- ① $\Delta_0: x = 0, 1.105\dots;$
- ② $\Delta_1: x = 0;$

Essential Ingredient From Real Algebraic Geometry (cont'd)

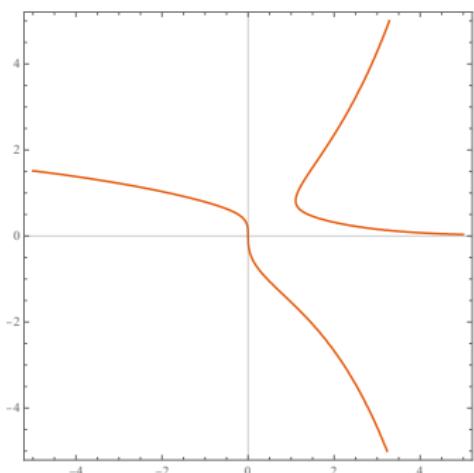


Figure 2: The locus of
 $f(x, y) = y^3 - (e^x - 1)y + x$

- The sub-discriminants:

- ① $\Delta_0 = 27x^2 - 12e^x + 12e^{2x} - 4e^{3x} + 4;$
- ② $\Delta_1 = 6 - 6e^x;$
- ③ $\Delta_2 = 3.$

- The real roots of

- ① $\Delta_0: x = 0, 1.105\dots;$
- ② $\Delta_1: x = 0;$
- ③ $\Delta_2: \text{None.}$

Essential Ingredient From Real Algebraic Geometry (cont'd)

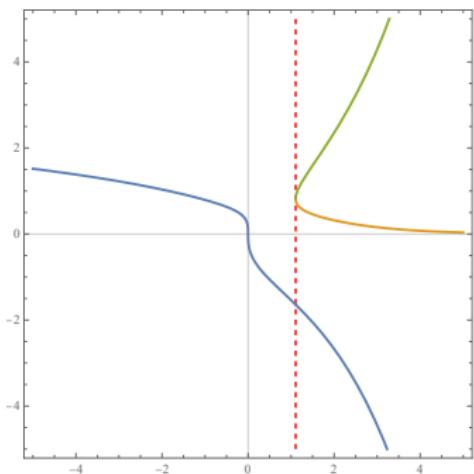


Figure 2: $f(x, y)$ is delineable when $x > 1.105 \dots$

- The sub-discriminants:
 - ① $\Delta_0 = 27x^2 - 12e^x + 12e^{2x} - 4e^{3x} + 4;$
 - ② $\Delta_1 = 6 - 6e^x;$
 - ③ $\Delta_2 = 3.$
- The real roots of
 - ① $\Delta_0: x = 0, 1.105 \dots;$
 - ② $\Delta_1: x = 0;$
 - ③ $\Delta_2: \text{None.}$
- For all $x_0 > 1.105 \dots$, $\Delta_0 \neq 0$, thus the real roots are continuous functions $y_1(x)$, $y_2(x)$ and $y_3(x)$.

The Proof for the Reduction Theorem

- Let φ be a quantifier-free formula whose atoms are $g_i \triangleright 0$ ($g_i \in S[\tan \frac{x}{2}]$).

The Proof for the Reduction Theorem

- Let φ be a quantifier-free formula whose atoms are $g_i \triangleright 0$ ($g_i \in S[\tan \frac{x}{2}]$).
- e.g. $\varphi(x) = \tan^3 \frac{x}{2} - (e^x - 1) \tan \frac{x}{2} + x < 0$.

The Proof for the Reduction Theorem

- Let φ be a quantifier-free formula whose atoms are $g_i \triangleright 0$ ($g_i \in S[\tan \frac{x}{2}]$).
- e.g. $\varphi(x) = \tan^3 \frac{x}{2} - (e^x - 1) \tan \frac{x}{2} + x < 0$.
- Now let $h_i \in S[y]$ such that $g_i(x) = h_i(x, \tan \frac{x}{2})$ and set $h = \prod_i h_i$. Similarly there is a $\tilde{\varphi}(x, y)$ such that $\varphi(x) = \tilde{\varphi}(x, \tan \frac{x}{2})$. That is

$$\varphi(x) \Leftrightarrow \left(\tilde{\varphi}(x, y) \wedge y = \tan \frac{x}{2} \right).$$

The Proof for the Reduction Theorem

- Let φ be a quantifier-free formula whose atoms are $g_i \triangleright 0$ ($g_i \in S[\tan \frac{x}{2}]$).
- e.g. $\varphi(x) = \tan^3 \frac{x}{2} - (e^x - 1) \tan \frac{x}{2} + x < 0$.
- Now let $h_i \in S[y]$ such that $g_i(x) = h_i(x, \tan \frac{x}{2})$ and set $h = \prod_i h_i$. Similarly there is a $\tilde{\varphi}(x, y)$ such that $\varphi(x) = \tilde{\varphi}(x, \tan \frac{x}{2})$. That is

$$\varphi(x) \Leftrightarrow \left(\tilde{\varphi}(x, y) \wedge y = \tan \frac{x}{2} \right).$$

- e.g. $\tilde{\varphi}(x, y) = y^3 - (e^x - 1)y + x < 0$.

The Proof for the Reduction Theorem

- Let φ be a quantifier-free formula whose atoms are $g_i \triangleright 0$ ($g_i \in S[\tan \frac{x}{2}]$).
- e.g. $\varphi(x) = \tan^3 \frac{x}{2} - (e^x - 1) \tan \frac{x}{2} + x < 0$.
- Now let $h_i \in S[y]$ such that $g_i(x) = h_i(x, \tan \frac{x}{2})$ and set $h = \prod_i h_i$. Similarly there is a $\tilde{\varphi}(x, y)$ such that $\varphi(x) = \tilde{\varphi}(x, \tan \frac{x}{2})$. That is

$$\varphi(x) \Leftrightarrow \left(\tilde{\varphi}(x, y) \wedge y = \tan \frac{x}{2} \right).$$

- e.g. $\tilde{\varphi}(x, y) = y^3 - (e^x - 1)y + x < 0$.
- Note that the subdiscriminants $\Delta_0, \Delta_1, \dots$ of $h \in S[y]$ is always in S , so they have finitely many real roots if they are not identically zero.

The Proof for the Reduction Theorem (cont'd)

- Then there is an interval $I = (M, +\infty)$ such that h is delineable over I .

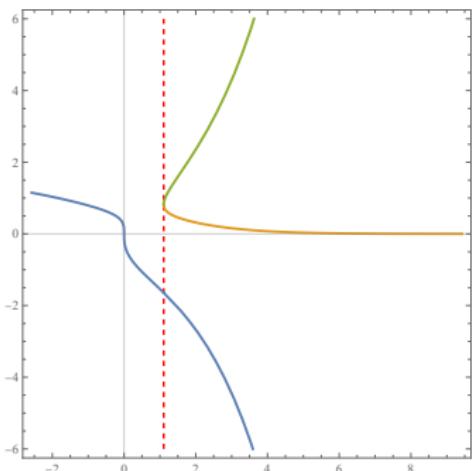


Figure 3: $h(x, y)$ is delineable over $I = (1.105 \dots, +\infty)$

The Proof for the Reduction Theorem (cont'd)

- Then there is an interval $I = (M, +\infty)$ such that h is delineable over I .
- The set $I \times \mathbb{R}$ consists of some cylindrically stacked cells, in which each h_i is sign-invariant.

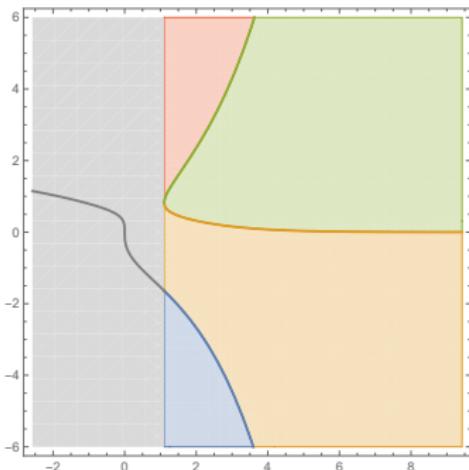
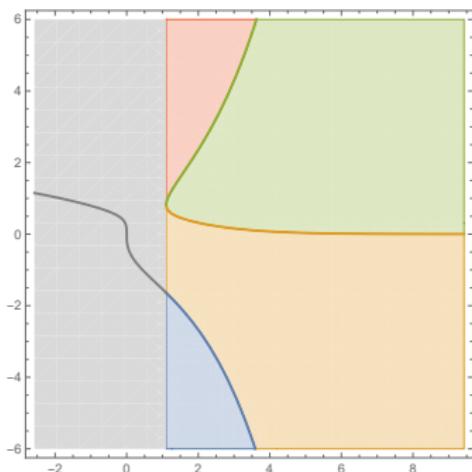


Figure 3: $I \times \mathbb{R}$ consists of cylindrically stacked cells

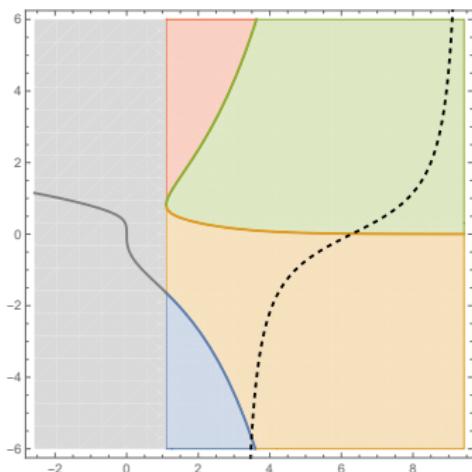
The Proof for the Reduction Theorem (cont'd)



- Then there is an interval $I = (M, +\infty)$ such that h is delineable over I .
- The set $I \times \mathbb{R}$ consists of some cylindrically stacked cells, in which each h_i is sign-invariant.
- For each cell C : $\tilde{\varphi}$ is either always True in C , or always False in C .

Figure 3: $I \times \mathbb{R}$ consists of cylindrically stacked cells

The Proof for the Reduction Theorem (cont'd)



- Then there is an interval $I = (M, +\infty)$ such that h is delineable over I .
- The set $I \times \mathbb{R}$ consists of some cylindrically stacked cells, in which each h_i is sign-invariant.
- For each cell C : $\tilde{\varphi}$ is either always True in C , or always False in C .
- It is easy to observe that the graph of $y = \tan \frac{x}{2}$ intersects with each cell in each period.

Figure 3: The curve $y = \tan \frac{x}{2}$ runs through each cell

The Proof for the Reduction Theorem (cont'd)

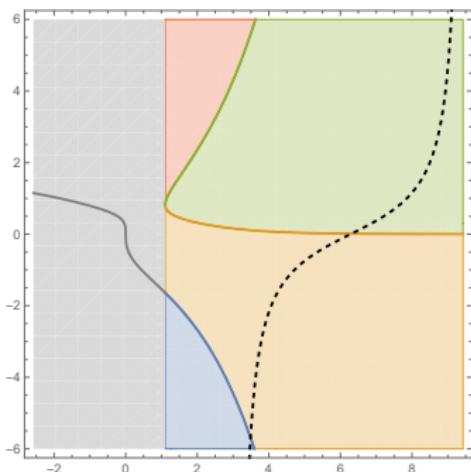


Figure 3: The curve $y = \tan \frac{x}{2}$ runs through each cell

- Then there is an interval $I = (M, +\infty)$ such that h is delineable over I .
- The set $I \times \mathbb{R}$ consists of some cylindrically stacked cells, in which each h_i is sign-invariant.
- For each cell C : $\tilde{\varphi}$ is either always True in C , or always False in C .
- It is easy to observe that the graph of $y = \tan \frac{x}{2}$ intersects with each cell in each period.
- Hence, if $\tilde{\varphi}(x, y)$ holds in cell C , $\varphi = \tilde{\varphi}(x, \tan \frac{x}{2})$ is also satisfiable in each period $(2k\pi - \pi, 2k\pi + \pi) \subseteq I$. It suffices to look at one of them.

1 Introduction

2 History

3 Reduction

4 Proof Sketch

5 Multivariate Case

6 Implementation

General Undecidability

- However, the **multivariate** theory of trigonometric functions is **undecidable**.

General Undecidability

- However, the **multivariate** theory of trigonometric functions is **undecidable**.
- Theorem (ISSAC '24, Chen & Xia Thm. 5.3)

The ring $\mathbb{Z}[x_1, \dots, x_n, \dots, \sin x_1, \dots, \sin x_n, \dots]$ is undecidable.

General Undecidability

- However, the **multivariate** theory of trigonometric functions is **undecidable**.
- Theorem (ISSAC '24, Chen & Xia Thm. 5.3)

The ring $\mathbb{Z}[x_1, \dots, x_n, \dots, \sin x_1, \dots, \sin x_n, \dots]$ is undecidable.

- This follows easily from **Laczkovich (2003)**.

Theorem (PAMS 2003, Laczkovich Thm. 1)

The ring generated by functions x , $\sin(x^n)$ and $\sin(x \sin(x^n))$ ($n = 1, 2, \dots$) is undecidable.

General Undecidability

- However, the **multivariate** theory of trigonometric functions is **undecidable**.
- Theorem (ISSAC '24, Chen & Xia Thm. 5.3)

The ring $\mathbb{Z}[x_1, \dots, x_n, \dots, \sin x_1, \dots, \sin x_n, \dots]$ is undecidable.

- This follows easily from **Laczkovich (2003)**.

Theorem (PAMS 2003, Laczkovich Thm. 1)

The ring generated by functions x , $\sin(x^n)$ and $\sin(x \sin(x^n))$ ($n = 1, 2, \dots$) is undecidable.

- Because one can encode composition and multiplication by introducing more variables.

General Undecidability

- However, the **multivariate** theory of trigonometric functions is **undecidable**.
- Theorem (ISSAC '24, Chen & Xia Thm. 5.3)

The ring $\mathbb{Z}[x_1, \dots, x_n, \dots, \sin x_1, \dots, \sin x_n, \dots]$ is undecidable.

- Hence, our result in the univariate case is **not very far from being optimal**.

1 Introduction

2 History

3 Reduction

4 Proof Sketch

5 Multivariate Case

6 Implementation

Package TranscendentalProblems

We implement the reduction algorithm with Mathematica 13. Our package `TranscendentalProblems` is available at:

[https://github.com/xiaxueqaq/TranscendentalProblems.](https://github.com/xiaxueqaq/TranscendentalProblems)

The Bomb

- Recall that there is still a bomb left in the water.

The Bomb

- Recall that there is still a bomb left in the water.
- **Question:** Will the mass and the bomb collide at some time $t > 0$?

$$(\exists t) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) ?$$

The Bomb

- Recall that there is still a bomb left in the water.
- **Question:** Will the mass and the bomb collide at some time $t > 0$?

$$(\exists t) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) ?$$

- Our algorithm shows that it **suffices to consider** the interval $[-3\pi, 3\pi]$:

$$(\exists t \in [-3\pi, 3\pi]) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) .$$

The Bomb

- Recall that there is still a bomb left in the water.
- **Question:** Will the mass and the bomb collide at some time $t > 0$?

$$(\exists t) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) ?$$

- Our algorithm shows that it **suffices to consider** the interval $[-3\pi, 3\pi]$:

$$(\exists t \in [-3\pi, 3\pi]) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) .$$

- The Mathematica built-in function `Reduce` returns **True**, confirming that there is some t satisfying the constraints.

The Bomb

- Recall that there is still a bomb left in the water.
- **Question:** Will the mass and the bomb collide at some time $t > 0$?

$$(\exists t) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) ?$$

- Our algorithm shows that it **suffices to consider** the interval $[-3\pi, 3\pi]$:

$$(\exists t \in [-3\pi, 3\pi]) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) .$$

- The Mathematica built-in function `Reduce` returns **True**, confirming that there is some t satisfying the constraints.
- To draw this conclusion, 1.531 seconds are used in total.

The Bomb

- Recall that there is still a bomb left in the water.
- **Question:** Will the mass and the bomb collide at some time $t > 0$?

$$(\exists t) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) ?$$

- Our algorithm shows that it **suffices to consider** the interval $[-3\pi, 3\pi]$:

$$(\exists t \in [-3\pi, 3\pi]) \left((t > 0) \wedge \left(-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2 \right) \right) .$$

- The Mathematica built-in function `Reduce` returns **True**, confirming that there is some t satisfying the constraints.
- To draw this conclusion, 1.531 seconds are used in total.
- So the bomb **explodes in the end**.

The Bomb

- Recall that there is still a bomb left in the water.
- **Question:** Will the mass and the bomb collide at some time $t > 0$?

$$(\exists t) ((t > 0) \wedge (-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2))?$$

- Our algorithm under the interval $[-3\pi, 3\pi]$:

wasted

$$(\exists t \in [-3\pi, 3\pi]) ((t > 0) \wedge (-\frac{11}{3}e^{-t} \sin(3t) + e^{-t} \cos(3t) - 1 = -5t - 7e^{-2t} + 2)).$$

- The Mathematica built-in function Reduce returns **True**, confirming that there is some t satisfying the constraints.
- To draw this conclusion, 1.531 seconds are used in total.
- So the bomb **explodes in the end**.

The Drone

- A drone is **hovering** over a city. The goal of the drone is to **land at the origin** but it has to **avoid some unsafe region W** .

The Drone

- A drone is **hovering** over a city. The goal of the drone is to **land at the origin** but it has to **avoid some unsafe region W** .
- Suppose that the trajectory of the drone is given by

$$\begin{cases} x(t) = 100e^{-t/10} \cos t \\ y(t) = 100e^{-t/10} \sin t \\ z(t) = 50 - \frac{1}{2}t \end{cases}.$$

The Drone

- A drone is **hovering** over a city. The goal of the drone is to **land at the origin** but it has to **avoid some unsafe region W** .
- Suppose that the trajectory of the drone is given by
$$\begin{cases} x(t) &= 100e^{-t/10} \cos t \\ y(t) &= 100e^{-t/10} \sin t \\ z(t) &= 50 - \frac{1}{2}t \end{cases}.$$
- And W is a building
$$\{(x, y, z) | 16 < x < 28, 6 < y < 15, 0 < z < 42\}.$$

The Drone

- A drone is **hovering** over a city. The goal of the drone is to **land at the origin** but it has to **avoid some unsafe region W** .
- Suppose that the trajectory of the drone is given by
$$\begin{cases} x(t) &= 100e^{-t/10} \cos t \\ y(t) &= 100e^{-t/10} \sin t \\ z(t) &= 50 - \frac{1}{2}t \end{cases}.$$
- And W is a building
$$\{(x, y, z) | 16 < x < 28, 6 < y < 15, 0 < z < 42\}.$$
- Can the drone complete its mission without crashing into W ?

The Drone

- A drone is **hovering** over a city. The goal of the drone is to **land at the origin** but it has to **avoid some unsafe region W** .

- Suppose that the trajectory of the drone is given by

$$\begin{cases} x(t) = 100e^{-t/10} \cos t \\ y(t) = 100e^{-t/10} \sin t \\ z(t) = 50 - \frac{1}{2}t \end{cases}.$$

- And W is a building

$$\{(x, y, z) | 16 < x < 28, 6 < y < 15, 0 < z < 42\}.$$

- Can the drone complete its mission without crashing into W ?

- $(\exists t) \left((50 - \frac{1}{2}t > 0) \wedge (50 - \frac{1}{2}t < 42) \wedge (100e^{-\frac{t}{10}} \cos t > 16) \wedge (100e^{-\frac{t}{10}} \cos t < 28) \wedge (100e^{-\frac{t}{10}} \sin t > 9) \wedge (100e^{-\frac{t}{10}} \sin t < 15) \right).$

The Drone

- A drone is **hovering** over a city. The goal of the drone is to **land at the origin** but it has to **avoid some unsafe region W** .

- Suppose that the trajectory of the drone is given by

$$\begin{cases} x(t) = 100e^{-t/10} \cos t \\ y(t) = 100e^{-t/10} \sin t \\ z(t) = 50 - \frac{1}{2}t \end{cases}.$$

- And W is a building

$$\{(x, y, z) | 16 < x < 28, 6 < y < 15, 0 < z < 42\}.$$

- Can the drone complete its mission without crashing into W ?

- $(\exists t) \left((50 - \frac{1}{2}t > 0) \wedge (50 - \frac{1}{2}t < 42) \wedge (100e^{-\frac{t}{10}} \cos t > 16) \wedge (100e^{-\frac{t}{10}} \cos t < 28) \wedge (100e^{-\frac{t}{10}} \sin t > 9) \wedge (100e^{-\frac{t}{10}} \sin t < 15) \right).$

- Our package **returns False** in 3.6s.

The Drone

- A drone is **hovering** over a city. The goal of the drone is to **land at the origin** but it has to **avoid some unsafe region W** .
- Suppose that the trajectory of the drone is given by

$$\begin{cases} x(t) = 100e^{-t/10} \cos t \\ y(t) = 100e^{-t/10} \sin t \\ z(t) = 50 - \frac{1}{2}t \end{cases}.$$

mission passed!

- And W is a building **respect +**
 $\{(x, y, z) | 16 < x < 28, 6 < y < 15, 0 < z < 42\}$.
- Can the drone complete its mission without crashing into W ?
- $(\exists t) \left((50 - \frac{1}{2}t > 0) \wedge (50 - \frac{1}{2}t < 42) \wedge (100e^{-\frac{t}{10}} \cos t > 16) \wedge (100e^{-\frac{t}{10}} \cos t < 28) \wedge (100e^{-\frac{t}{10}} \sin t > 9) \wedge (100e^{-\frac{t}{10}} \sin t < 15) \right).$
- Our package **returns False** in 3.6s.

Experiments

We report some experimental data here.

Examples	1	2	3	4	5	6
Time (s)	1.531	0.969	1.797	3.562	1.891	1.438
Examples	7	8	9	10	11	12
Time (s)	0.125	0.031	0.188	0.078	8.406	2.109

Table 1: Running Time

Thank you!

You are more than welcome to give any suggestion!