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图 1: 高等代数习题课教员正在进行教学反思
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第三版前言

2024年春季学期, 笔者第三次担任高等代数II一课助教. 期间对原有内容做了

一定修订, 并补充了十余道习题.

富兰克林·罗斯福曾四次连任美国总统, 他因脑溢血在第四任任期上去世.

也许明年不应当再做同一门课助教.

下雪

二零二四年夏 于 燕园
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图 2: Cantor suffered from depression and went insane eventually, Gödel spent his

last years suspecting he had been poisoned. For safety reasons, maybe you should

close the book now.
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修订版前言

2023年2月到6月, 笔者重新修订了这份习题课讲义. 一方面是为了与李文威

老师的高等代数II课程相适应,另一方面也是因为笔者深感初版讲义过于粗糙,不

堪入目. 所以在第二年讲授高等代数II习题课的过程中进行了重新编排和大幅度

修订. 初版讲义按照讲授顺序编排, 而新版讲义按照课程内容进行了重新编排. 同

时新版讲义为与今年正课课程内容相容, 新添加了许多内容, 如群论初步以及张

量积部分都是此次新增的. 旧版讲义中一部分笔者认为不太具有启发性的习题在

此次修订后也被删去了.

群论部分习题98-102以及张量积章节的所有习题来自李文威老师的平时作

业. 多道习题来源于李尚志老师的各种著作. 习题95来自Michael Artin所著

的Algebra一书. 部分习题解答参考了Nigel Hitchin所著的Projective Geometry

和Keith Conrad所编写的讲义Simplicity of PSL(n,F). 在讲义的编写过程中笔者

还参考了聂灵沼老师和丁石孙老师合著的《代数学引论》和Serge Lang的Algebra.

此外在讲义的使用过程中吴永彤同学和艾心玥同学指出了几处错误, 在此一并表

示感谢.

封二的白猫叫大宝. 它在新太阳地下书店学习过高等代数.

若您在阅读时感到不适, 请立刻停止阅读并及时向您的同伴/恋人/朋友寻求

帮助. 必要时可以穿戴安全帽以避免头部受伤.

下雪

二零二三年夏 于 燕园
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https://kconrad.math.uconn.edu/blurbs/grouptheory/PSLnsimple.pdf
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图 3: 讲义作者对阅读过程中可能造成的精神损伤概不负责
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前言

本讲义为作者在2022年2月-6月期间在北京大学赵玉凤老师主讲的高等代

数II所配套习题课上使用的讲义. 主要面向对象为数院和信科的大一同学. 内

容包括多项式, Jordan标准形与有理标准形, 线性变换以及内积空间的相关习题.

高等代数作为数院大一三门基础课之一. 是每个数学系学生必须掌握的基本

功, 也是开启代数方向学习必不可少的一门课程. 而练习则是每一门课程学习中

不可或缺的重要组成部分, 几乎可以肯定的是: 如果一个学生没有做过充分多的

练习, 那么他就不可能掌握高等代数. 然而练习的量只是一方面, 更为重要的是练

习的“质”. 可以说, 大量重复而低质量的习题对学习只有百害而无一利, 例如: 做

成百上千道求极限习题对学好数学分析毫无帮助反而只会产生虚假的满足感. 然

而从初学者的角度而言, 没有人能指望一个新手可以一开始就判断出一道题目的

价值高低, 这样挑选优质习题的任务就落到了习题课助教的身上.

出于这个原因, 作者在习题课上挑选了六十余道习题, 虽然不敢说一定都是

好题, 但总体上遵循以下几条原则: 一. 题目新颖, 根据同学们的反馈, 许多习题

他们之前并未见过, 这在不少人“刷丘砖”的贵校是一件不容易做到的事; 二. 重视

知识间的联系, 往往同一堂习题课上, 前一道习题的结论立刻可以用在后一道习

题上; 三. 紧扣正课大纲, 确保在完成每一道练习题中都能加深对正课所学知识的

理解. 例如练习52将转置作为线性变换, 要求其Jordan标准形, 通常习惯了线性变

换作为矩阵写出的学生面对这道题也许会大受震撼, 但是阅读了解答之后他们又

能感受到线性变换概念独立于矩阵的合理性, 这对于破除线性映射等于矩阵的刻

板印象大有好处. 再例如, Lagrange插值多项式 (练习8)并不单独出现, 而是作为

中国剩余定理 (练习7)的推论产生, 并进一步给出Hermite插值 (练习9). 这样就将

不同知识点串联在了一起, 使学生不至于产生“学了没用”的消极想法.

当然在“内卷”趋势愈演愈烈的当下, 也许在现在还十分新颖的选材, 几年后
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由于教研的进步就变得略显陈旧; 今天的好题, 由于信息的传播, 明天可能就变成

了常见套路. 因此作者也不能保证未来的读者在阅读本讲义时仍能同意上面几条

原则. 但作者相信任何时候都不会缺乏精妙的习题, 到那时自然会有新的思想火

花出现.

在讲义的编写过程中, 作者参考了许多国内外的优质教材并选取了其中部分

习题, 如李尚志老师的《线性代数(数学专业用)》, 丘维声老师的《高等代数》等

等. 赵玉凤老师布置的课后作业也是习题的重要组成部分, 另外还有许多同学朋

友提供了重要的习题素材. 此外在这一学期的教学过程中, 有同学指出了讲义中

的几处笔误. 在此向所有在讲义编写中提供帮助的老师同学表示衷心的感谢! 另

外作者还想特别感谢本科阶段遇到的几位特别认真负责的助教学长学姐, 细致而

耐心的你们是我学习的榜样.

囿于编写时间仓促以及作者能力水平所限, 讲义中仍可能有错误或疏漏, 望

各界师生指出, 以便及时修订.

下雪

二零二二年夏 于 燕园
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第一章 多项式

Exercise 1

分母有理化 1

3+2 3√2+ 3√4
.

Solution 1

首先f(x) = x3 − 2满足f( 3
√
2) = 0, 再令g(x) = x2 + 2x+ 3. 那么我们要求的

就是
1

g(x)

∣∣∣∣
x= 3√2

=
u(x)

u(x)g(x)

∣∣∣∣
x= 3√2

=
u(x)

u(x)g(x) + v(x)f(x)

∣∣∣∣
x= 3√2

.

于是问题转化为是否存在u(x), v(x)使得ug + vf ∈ Q. 由ug + vf的形式立即想

到d(x) = gcd(f(x), g(x))也有相同的形式, 于是计算d(x). 由扩展欧几里得算法:

x3 − 2 = (x− 2)(x2 + 2x+ 3) + (x+ 4)

x2 + 2x+ 3 = (x− 2)(x+ 4) + 11

=⇒ (x2 + 2x+ 3) = (x− 2)[(x3 − 2)− (x− 2)(x2 + 2x+ 3)] + 11

=⇒ (x2 + 4x+ 5)g(x)− (x− 2)f(x) = 11

即d(x) = 11, u(x) = x2 − 4x+ 5, v(x) = −(x− 2).

因此:

1

3 + 2 3
√
2 + 3

√
4
=

3
√
4− 4 3

√
2 + 5

u( 3
√
2)g( 3

√
2) + v( 3

√
2)f( 3

√
2)

=
3
√
4− 4 3

√
2 + 5

11
.

注记: 事实上Q( 3
√
2) = Q[ 3

√
2] ∼= Q[x]/(x3 − 2)构成一数域, 见练习34.
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2 第一章 多项式

Exercise 2

能否在R[x]中找到非平凡多项式f(x), g(x), h(x)使得f 2(x) = x(g2(x)+h2(x))?

若将R[x]换成C[x]又如何?

Solution 2

在R上: 因为deg f 2 = 2deg f . 而且g2和h2的首项系数都是正数, 因此它们的

首项不可能互相抵消, 所以deg(g2 + h2) = max{2 deg g, 2 deg h}. 这样2 deg f是一

个偶数, deg(x(g2 + h2))是一个奇数, 它们不可能相等.

而在C上情况则有所不同, 此时g2和h2的首项可能互相抵消,如: g(x) = (1
2
x+

1
2
), h(x) = (1

2
ix− 1

2
i). 那么g2(x)+h2(x) = x,从而有f(x) = x满足f 2 = x(g2+h2).

Exercise 3

令f(x) = 1 + x+ x2

2!
+ · · ·+ xn

n!
.

(1) 证明f(x)没有重根;

(2) f(x)在R上有多少个根 (不记重数)?

(3) f(x)在C上有多少个根 (不记重数)?

Solution 3

(1) 首先计算f ′(x) = 1 + x+ x2

2!
+ · · ·+ xn−1

(n−1)!
, 而

gcd(f(x), f ′(x)) = gcd(f(x)− f ′(x), f ′(x)) = (
1

n!
xn, f ′(x)).

注意到 1
n!
xn的因式里只有x的幂次, 但显然x ∤ f ′(x), 所以gcd(f(x), f ′(x)) = 1.

f(x)没有重根.

(2) 显然n = 0时没有根, n = 1时有一个根. 下证明2 | n时f(x)在R上无根, 2 ∤ n时
恰有一个根.

假设命题已对n < 2k时成立, 我们证明对于n = 2k, n = 2k + 1也成立 (k ∈
N+):
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第一章 多项式 3

n = 2k时, f(x)为偶次数多项式, 它在R上有最小值f(x0), 且f ′(x0) = 0. 注意

到x0 ̸= 0 (f ′(0) = 1 ̸= 0), 因此最小值f(x0) = f ′(x0) +
xn
0

n!
> 0. f(x) > 0,

f(x)在R上无根.

n = 2k + 1时, 上面已证f ′(x) > 0, 因此f(x)在R上严格单调递增, 显然存在唯

一的x0 ∈ R使得f(x0) = 0. f(x)在R上有一个根.

(3) 根据代数基本定理, f(x)在C上有n个根 (记重数). 而由(1)知道f(x)没有重根,

因此f(x)在C上不记重数地也有n个根.

注记: 本练习和练习2一起说明了改变讨论的基域, 不但会影响多项式的分解

和可约性, 还会影响多项式的解集.

Exercise 4

令K为一域, 且K非代数闭. 以下将分步证明K上的方程组都可以用一个方

程表示:

(1) 存在多项式f ∈ K[x, y]使得f(x, y) = 0当且仅当x = y = 0;

(2) 进一步说明对于任意正整数n,存在多项式g ∈ K[x1, . . . , xn]使得g(x1, . . . , xn) =

0当且仅当x1 = · · · = xn = 0;

(3) 证明对于任意一组方程组f1(x1, . . . , xn) = · · · fs(x1, . . . , xn) = 0，都存在一个

多项式h(x1, . . . , xn)使得它们的解相同。

Solution 4

(1) 因为K不是代数闭域, K[x]上存在多项式f0(x) =
∑m

k=0 akx
k(ak ∈ K, am ̸=

0)在K上无根. 将其齐次化, 令

f(x, y) =
m∑
k=0

akx
kym−k.

则显然x = y = 0为f(x, y) = 0的平凡解. 若还有非平凡解(x0, y0), 则y0必不

为0 (否则代入f后得到amx
m
0 = 0,迫使x0为零). 于是f(x0, y0)/y

m
0 =

∑m
k=0 ak(x0/y0)

k,

即x0

y0
为f0在K上的根, 这与f0的选取矛盾. 因此f(x, y) = 0当且仅当x = y = 0.
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4 第一章 多项式

(2) 用归纳法, 若命题对n − 1成立: 记n − 1情形的多项式为gn−1(x1, . . . , xn−1),

则g(x1, . . . , xn) := f(gn−1(x1, . . . , xn−1), xn)满足要求.

(3) 令h(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fs(x1, . . . , xn))即可, 其中g为第二问中

多项式.

注记: 本练习推广了R上f1 = · · · = fs = 0 ⇔ f 2
1 + · · · + f 2

s = 0的结果. 这进

一步告诉我们在非代数闭域中讨论方程的解是很糟糕的, 因此将来我们在解方程

时如没有特殊说明, 一律在代数闭域上求解 (如C).

Exercise 5

C上有多项式f(x) = x3 + 6x2 + 3ax+ 8, 问a取何值时f(x)有重根. 并求出此

时f(x)的根.

Solution 5

f ′(x) = 3x2 + 12x+ 3a, 于是带余除法得: f(x) = x+2
3
f ′(x) + (2a− 8)(x− 1)

Case 1. a = 4, 从而f(x) = x3 + 6x2 + 12x+ 8 = (x+ 2)3, x1 = x2 = x3 = −2.

Case 2. a ̸= 4, 为使(f(x), f ′(x)) ̸= 1, 只能有(x− 1)|f(x). 故3a+15 = 0, a = −5,

此时f(x) = x3 + 6x2 − 15x+ 8 = (x− 1)2(x+ 8), x1 = x2 = 1, x3 = −8.

另解: 事实上我们有关于结式的定理:

Theorem 1. 设A = a0x
d + · · ·+ ad, B = b0x

e + · · ·+ be为一整环R上的单变元多

项式. 定义A和B的Sylvester结结结式式式为:

Res(A,B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 · · · 0 b0 0 · · · 0

a1 a0 · · · 0 b1 b0 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0
...

...
. . . a0

...
...

. . . b0

ad ad−1 · · · ... be be−1 · · · ...

0 ad
. . .

... 0 be
. . .

...
...

...
. . . ad−1

...
...

. . . be−1

0 0 · · · ad 0 0 · · · be

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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第一章 多项式 5

即前e列为A的系数错位排列, 后d列为B的系数错位排列.

则A和B有非常数公因式当且仅当Res(A,B) = 0,特别地A和B在一个包含R的

代数闭域上有公共根当且仅当Res(A,B) = 0.

证明. 记Pn为FracR上次数小于n的多项式集合, 则映射

φ :
Pe × Pd → Pd+e

(u, v) 7→ uA+ vB

的矩阵行列式恰为Res(A,B). 因此A, B有公因子当且仅当kerφ ̸= 0, 也就当且仅

当Res(A,B) = 0.

回到本题, f(x)和f ′(x)的Sylvester结式为:

Res(f, f ′) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 3 0 0

6 1 12 3 0

3a 6 3a 12 3

8 3a 0 3a 12

0 8 0 0 3a

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 3(2880− 864a− 108a2 + 36a3)

因式分解得到Res(f, f ′) = 108(−4+a)2(5+a). 因此f有重根当且仅当a = 4或a =

−5. 这是纯粹机械的计算, 无需动脑.

Exercise 6

设A,B ∈ Rn×n为两实系数对称矩阵, A正定. 试证明对充分大的t, tA + B正

定.

Solution 6

由A正定知存在可逆方阵P ∈ Rn×n使得P TAP = I. 因此有相合关系: tI +

P TBP = tP TAP + P TBP = P T (tA + B)P . 由于相合保持正定性, 因此只要证

明tI+P TBP当t充分大时正定即可. 考虑tI+P TBP的顺序主子式D1(t), . . . , Dn(t),

它们都是以t为变元的多项式, 且Dk(t)的首项为t
k. 所以当t充分大时对所有k =

1, . . . , n都有Dk(t) > 0. 此即tI + P TBP正定.
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6 第一章 多项式

注记: 事实上, 关于多项式的根, 我们有著名的柯西界 (Cauchy’s Bound). 因

此我们不但可以证明tA+B在t充分大时正定,还可以计算得到一个M使得对于任

意t > M都有tA+B正定.

Theorem 2 (柯西界). 若x0满足多项式方程xn + an−1x
n−1 + · · ·+ a0 = 0, 则:

|x0| ≤ 1 + max{|a0|, . . . , |an−1|}.

证明. 若|x0| ≤ 1则结论显然. 以下假设|x0| > 1. 因为三角不等式, 我们有

|x0|n = |
n−1∑
k=0

akx
k
0| ≤

n−1∑
k=0

|ak||xk0| ≤ max
0≤k≤n−1

|ak| ·
n−1∑
k=0

|x0|k = max
0≤k≤n−1

|ak| ·
|x0|n − 1

|x0| − 1
.

又因为|x0| > 1, 进一步放缩得到:

|x0|n ≤ max
0≤k≤n−1

|ak| ·
|x0|n − 1

|x0| − 1
≤ max

0≤k≤n−1
|ak| ·

|x0|n

|x0| − 1
.

两边约去|x0|n, 整理得到:

|x0| ≤ 1 + max
0≤k≤n−1

|ak|,

如所欲证.

Exercise 7 (再论中国剩余定理)

我们先给出中国剩余定理的最一般形式: 设R为含幺环, N1, . . . , Nr⊴R为R的

非平凡理想且两两互素 (Ni + Nj = (1)). 令σi表示自然同态σi : R → R/Ni

(i = 1 . . . r), 则映射

σ :
R → R/N1 ⊕ · · · ⊕R/Nr

x 7→ (σ1(x), . . . , σr(x))

为满同态, 且kerσ = N1 ∩ · · · ∩Nr.

特别地R/(N1 ∩ · · · ∩Nr) = R/N1 ⊕ · · · ⊕R/Nr.

我们主要关心的情形为R = Z或者K[x], 此时可以重新叙述定理为:
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第一章 多项式 7

令环R = Z或K[x], a1, . . ., ar ∈ R且两两互素. 再给定b1, . . ., br ∈ R. 则同余

方程组 
x ≡ b1 (mod a1)

x ≡ b2 (mod a2)
...

x ≡ br (mod ar)

在R内恒有解, 且这个解在mod a1a2 · · · ar的意义下是唯一的: 即若x1, x2 ∈ R都满

足该方程组, 则x1 − x2 ≡ 0 (mod a1 . . . ar).

证明该定理.

Solution 7

由a1, . . ., ar ∈ R两两互素知: a1与a2 · · · ar互素. 这是因为a1与 a2, · · · , ar分
别互素:

u2a1 + v2a2 = u3a1 + v3a3 = · · · = ura1 + vrar = 1

全部乘起来得到
∏r

k=2(uka1+vkak) = 1,展开并合并全部含a1的项得a1u+
∏r

k=2(vkak) =

1. 因此a1与a2 · · · ar互素: x1a1 + y1(a2 · · · ar) = 1. 同理有:

a2与a1a3 · · · ar互素: x2a2 + y2a1a3 · · · ar = 1

· · ·
ar与a1 · · · ar−1互素: xrar + yra1 · · · ar−1 = 1

令x =
∑r

i=1 biyi
∏

j ̸=i aj, 就有x满足:

x ≡ biyi
∏
j ̸=i

aj ≡ bi (mod ai).

因此同余方程组恒有解, 而若x1, x2都满足该方程, 则x1 − x2 ≡ 0 (mod ai).

所以x1 − x2 ≡ 0 (mod a1 · · · ar). 这就证明了唯一性.

Exercise 8 (Lagrange插值)

给定a1, . . ., ar, b1, . . ., br ∈ K. 求f ∈ K[x]满足: f(a1) = b1, . . ., f(ar) = br.
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8 第一章 多项式

Solution 8

此即 
f ≡ b1 (mod (x− a1))

...

f ≡ br (mod (x− ar))

由中国剩余定理 (练习7)立得.

Exercise 9 (Hermite插值)

在Lagrange插值8的要求上,我们还额外要求前s个点处导数有特定值: f ′(a1) =

d1, . . ., f
′(as) = ds. 求f .

Solution 9

此即 

f ≡ b1 + d1(x− a1) (mod (x− a1)
2)

...

f ≡ bs + ds(x− as) (mod (x− as)
2)

f ≡ bs+1 (mod (x− as+1))
...

f ≡ br (mod (x− ar))

仍由中国剩余定理 (练习7)立得.

注记: 事实上还可以推广到要求一点上函数值直到某高阶导数满足一定条

件,请读者自行思考此时应该如何写出f满足的方程 (提示: 考虑f在某点处Taylor展

开和它的各阶导数关系).

Exercise 10 (Another Freshman’s Dream)

设A, B, C, D为数域F上n阶方阵, 且AC = CA, 求证:∣∣∣∣∣ A B

C D

∣∣∣∣∣ = |AD − CB|
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第一章 多项式 9

Solution 10

让我们先看A可逆的情形:

∣∣∣∣∣A B

C D

∣∣∣∣∣ =
∣∣∣∣∣
(

I O

−CA−1 I

)(
A B

C D

)∣∣∣∣∣ =
∣∣∣∣∣A B

O D − CA−1B

∣∣∣∣∣
= |A||D − CA−1B| = |AD − ACA−1B| = |AD − CAA−1B| = |AD − CB|

这给了我们充分的信心. 注意到∀λ ∈ F : (A + λI)C = C(A + λI). 因此当(A +

λI)可逆时同样有 ∣∣∣∣∣ A+ λI B

C D

∣∣∣∣∣ = |(A+ λI)D − CB|

令f(λ) =

∣∣∣∣∣ A+ λI B

C D

∣∣∣∣∣, g(λ) = |(A + λI)D − CB|. 则f和g都是关于λ的多项式

(这是因为行列式的定义中只出现加法和乘法).

由上面的讨论知道, 当A+ λI可逆时, f(λ) = g(λ). 再观察到: A+ λI不可逆

当且仅当|A+ λI| = 0, 而|A+ λI|又是一个关于λ的不恒为零的多项式, 因此至多

只有有限个λ使得|A+ λI| = 0成立. 所以有无穷个λ ∈ F使得f(λ) = g(λ), 这迫使

两个多项式相等: f = g. 特别地, f(0) = g(0), 即

∣∣∣∣∣ A B

C D

∣∣∣∣∣ = |AD − CB|.

注记: 先在一个”稠密”的集合上证明某种性质, 再推广到全集, 这是一种常用

的证明手法.

Exercise 11

令A,B ∈ Rn×n, C = A+ iB (i为虚数单位). 求证:

det

(
A −B
B A

)
= | detC|2.
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10 第一章 多项式

Solution 11

| detC|2 = detC · detC = detC · detC = det

(
C

C

)

= det

(
A+ iB

A− iB

)
= det

(
A+ iB iA−B

A− iB

)

= det

(
A+ iB iA−B

−iA+B 2A

)
= det

(
A
2
+ iB

2
−B

−iA+B 2A

)

= det

(
A
2

−B
B 2A

)
= det

(
A −B
B A

)
.

Exercise 12

若两个实系数方阵在复数域上相似, 则它们在实数域上也相似.

Solution 12

设B = P−1AP , 则将P拆成R + iS的形式, 其中R和S都是实系数方阵, 那么

由B = P−1AP得到(R + iS)B = PB = AP = A(R + iS). 比较实部虚部知

AR = RB, AS = SB.

令Q = R + λS, 则f(λ) := detQ为一多项式, 由f(i) = detP ̸= 0知f(λ) ̸= 0.

因此f只有有限个根, 我们可以选取λ0 ∈ R使得R + λ0S可逆. 由(R + λ0S)B =

A(R + λ0S)以及R + λ0S可逆知, A和B在实数域上也相似.

注记: 这里利用多项式的理论证明了特殊情况下的相似对域扩张的不变性.

事实上这一命题对一般的域扩张都广泛成立: 即若K/k是一域扩张, 则两k系数方

阵在k上相似当且仅当它们在K上相似, 我们将会在相似标准形理论部分见到这

一事实.

Exercise 13

证明: 若(x− 1) | f(xn), 则(xn − 1)|f(xn).
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Solution 13

(x− 1) | f(xn)
=⇒ 0 = f(1n) = f(1)

=⇒ (y − 1) | f(y)
=⇒ f(y) = q(y)(y − 1)

=⇒ f(xn) = q(xn)(xn − 1)

=⇒ (xn − 1) | f(xn).

Exercise 14

证明gcd(xn − 1, xm − 1) = xgcd(n,m) − 1.

Solution 14

不妨设n > m, 记n除以m的余数为n%m: 则gcd(xn − 1, xm − 1) = gcd(xn −
1−xn−m(xm− 1), xm− 1) = gcd(xn−m− 1, xm− 1) = · · · = gcd(xn%m− 1, xm− 1).

由于这就是更相减损术求两个整数最大公因数的过程, 因此gcd(xn − 1, xm − 1) =

xgcd(n,m) − 1.

Exercise 15

若方阵A为幂零阵, Am = O, 证明I + A可逆.

Solution 15

由1/(1 + x)的Taylor展开:

1

1 + x
= 1− x+ x2 − x3 + · · ·

而xm = 0时xm, xm+1, xm+2 · · ·都不计入求和.

于是:

(I − A+ A2 − A3 + · · ·+ (−1)m−1Am−1)(I + A) = I + (−1)m−1Am = I
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12 第一章 多项式

另解: 由于gcd(xm, x + 1) = 1, 所以存在u, v ∈ F [x]使得xmu + (1 + x)v = 1,

带入x = A就有

I = u(A)Am + v(A)(I + A) = v(A)(I + A).

于是v(A)就是所欲求的I + A的逆.

Exercise 16

设a1, . . ., an为两两不同的整数. 求证: (x− a1)(x− a2) · · · (x− an)− 1在Q上
不可约.

Solution 16

设f(x) = (x−a1)(x−a2) · · · (x−an)−1,若存在p(x), q(x) ∈ Q[x]使得f(x) =

p(x)q(x), 由Gauss引理, 不妨假设p(x)和q(x)都是整系数多项式, 且p(x), q(x)均为

首一多项式. 由于对任意ai我们总有f(ai) = −1, p(ai), q(ai) ∈ Z. 于是下列两种
情况有且仅有一种为真:

(i) p(ai) = 1, q(ai) = −1;

(ii) p(ai) = −1, q(ai) = 1.

无论是哪种情况都有p(ai) + q(ai) = 0. 所以p + q在a1, . . ., an处都为0. 由于p,

q都是首一多项式, p + q非零. p + q至少有n个根. 所以deg(p + q) ≥ n, deg p ≥
n或deg q ≥ n. 这样f = p · q就不能是f的一个非平凡分解. 故Q上f不可约.

练习: 若n是奇数, a1, . . ., an为两两不同的整数. 求证: (x−a1)(x−a2) · · · (x−
an) + 1在Q上不可约.

更多的练习: a1, . . ., an为两两不同的整数. 求证: (x − a1)
2(x − a2)

2 · · · (x −
an)

2 + 1在Q上不可约.

Exercise 17

设f(x) = x3 + (1+ t)x2 + 2x+ 2u, g(x) = x3 + tx+ u的最大公因式为二次多

项式. 求t, u的值
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Solution 17

首先注意到f(x)−g(x) = (1+t)x2+(2−t)x+u也被gcd(f, g)整除. 而deg gcd(f, g) =

2. 故t ̸= −1, 且f(x)− g(x)正是gcd(f, g). 于是选取g进一步计算:

x3 + tx+ u = [(1 + t)x2 + (2− t)x+ u](
1

1 + t
x+ c)

其中c依赖于u: 若u ̸= 0, 则c = 1, 否则还需进一步讨论.

Case 1, u ̸= 0: x3 + tx+ u = [(1 + t)x2 + (2− t)x+ u]( 1
1+t
x+ 1), 展开得:{

2−t
1+t

+ t+ 1 = 0
u

1+t
+ 2− t = t

=⇒

{
t = −1±

√
11i

2

u = −7∓
√
11i

Case 2, u = 0: 则直接解得最大公因式的根为x = 0, t−2
t+1

. 于是( t−2
t+1

)2 + t = 0, 解

得t1 = −4, t2,3 =
1±

√
3i

2
.

注记: 与练习5中的定理1类似, 我们有子结式的概念可以用于机械地计算两

个多项式最大公因式恰好为某个次数的条件.

Theorem 3 (子结式). 设F = a0x
d + · · ·+ ad, G = b0x

e + · · ·+ be分别为整环D上

的d和e次多项式. Pn表示K = Frac D上小于n次的多项式集合. 定义映射

φj :
Pe−j ⊕ Pd−j → Pd+e−j

(u, v) 7→ uF + vG
.

则φj是一个线性映射. 其在多项式环的自然基下的矩阵为

a0 0 · · · 0 b0 0 · · · 0

a1 a0 · · · 0 b1 b0 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0
...

...
. . . a0

...
...

. . . b0

ad ad−1 · · · ... be be−1 · · · ...

0 ad
. . .

... 0 be
. . .

...
...

...
. . . ad−1

...
...

. . . be−1

0 0 · · · ad 0 0 · · · be


e− j列 d− j列xiaxueqaq 2022-2024



14 第一章 多项式

这是一个(d + e − j) × (d + e − 2j)的矩阵, 定义sResj(F,G)为截取其前d +

e− 2j行的行列式. 由定义直接看出sResj(F,G) = 0当且仅当存在非零多项式u ∈
Pe−j, v ∈ Pd−j使得deg uF + vG < j (回顾线性方程组理论!)

通过主子结式理论, 我们给出两个多项式最大公因式次数的等价刻画:

deg gcd(F,G) ≥ j当且仅当前j个子结式为零: sRes0(F,G) = · · · = sResj−1(F,G) =

0.

关于结式的定理1即本定理中j = 1情形.

证明. 若deg gcd(F,G) ≥ j, 则

deg lcm(F,G) = deg
FG

gcd(F,G)
≤ d+ e− j.

因此存在非零多项式u ∈ Pe−j+1, v ∈ Pd−j+1使得deg lcm(F,G) = uF = −vG. 所
以对于任意0 ≤ k ≤ j − 1有sResk(F,G) = 0.

对相反的方向, 我们使用归纳法证明. 首先反向对j = 1成立: sRes0(F,G) =

0蕴含存在非零的u, v ∈ K[x], 次数分别小于e和d, 使得uF + vG = 0. 假设命

题已经对j − 1成立, 由归纳假设知sRes0(F,G) = · · · = sResj−2(F,G) = 0蕴

含deg gcd(F,G) ≥ j − 1, 又知道sResj−1(F,G) = 0蕴含存在非零u ∈ Pe−j+1, v ∈
Pd−j+1使得deg uF + vG < j − 1, 这迫使uF + vG = 0. 于是uF = −vG为F和G的
公倍式, deg lcm(F,G) ≤ d+ e− j. 最终我们得到deg gcd(F,G) ≥ j.

作为定理的直接推论:

Corollary 4. deg gcd(F,G) = j当且仅当前j个子结式为零而第j + 1个子结式不

为零: sRes0(F,G) = · · · = sResj−1(F,G) = 0, sResj(F,G) ̸= 0.

本题中的φ0, φ1, φ2分别有矩阵表示:

1 1

1 + t 1 0 1

2 1 + t 1 t 0 1

2u 2 1 + t u t 0

2u 2 u t

2u u


,



1 1

1 + t 1 0 1

2 1 + t t 0

2u 2 u t

2u u


,


1 1

1 + t 0

2 t

2u u

 .
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第一章 多项式 15

截取横线上方子矩阵并计算行列式得到:

sRes0(f, g) = −2t4u− t3u2 − 4t3u+ 2t2u2 + 12t2u− 4tu2 − 14tu− u3 − 7u2 + 8u,

sRes1(f, g) = t3 + 3t2 − tu− 3t− u+ 4,

sRes2(f, g) = −t− 1.

解
−2t4u− t3u2 − 4t3u+ 2t2u2 + 12t2u− 4tu2 − 14tu− u3 − 7u2 + 8u = 0

t3 + 3t2 − tu− 3t− u+ 4 = 0

t ̸= −1

得 {
t = −1±

√
11i

2

u = −7∓
√
11i

或

{
t = −4

u = 0
或

{
t = 1±

√
3i

2

u = 0

这依然是纯粹机械的计算, 无需动脑.

关于主子结式, 可以参考《符号计算选讲》(王东明等著)一书或是维基百科.

限于篇幅限制在此处不再展开.

Exercise 18

证明: 如果(x2+x+1) | [f1(x3)+xf2(x3)],那么(x−1) | f1(x), (x−1) | f2(x).

Solution 18

显然x2 + x + 1的两根为ω = −1+
√
3i

2
和ω2 = ω = −1−

√
3i

2
. 由(x2 + x + 1) |

[f1(x
3) + xf2(x

3)]知ω和ω2也是[f1(x
3) + xf2(x

3)]的根, 即

f1(ω
3) + ωf2(ω

3) = f1(ω
6) + ω2f2(ω

6) = 0.

但是注意到ω是三次单位根 (ω3 = 1), 于是f1(1)+ωf2(1) = f1(1)+ω2f2(1) =

0. 写成线性方程组的形式就是:(
1 ω

1 ω2

)(
f1(1)

f2(1)

)
=

(
0

0

)
.

由系数矩阵是Vandermonde矩阵知行列式不为0, 该方程组只有零解. 所

以f1(1) = f2(1) = 0. 即(x− 1) | f1(x), (x− 1) | f2(x)

xiaxueqaq 2022-2024
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16 第一章 多项式

Exercise 19

证明: 如果(xn−1 + · · · + x + 1) | [f1(xn) + xf2(x
n) + · · · + xn−2fn−1(x

n)], 那

么(x− 1) | fi(x), i = 1..n− 1.

Solution 19

完全类似练习18. xn−1 + · · ·+ x+ 1 = 0的根为除1外的全体n次单位根:

ωn = cos
2π

n
+ i sin

2π

n
, ω2

n, . . . ω
n−1
n .

由整除关系, 它们带入f1(x
n) + xf2(x

n) + · · ·+ xn−2fn−1(x
n)后为0. 这样就有系数

矩阵为Vandermonde矩阵的线性方程组
1 ωn · · · ωn−2

n

1 ω2
n · · · ω

2(n−2)
n

...
...

. . .
...

1 ωn−1
n · · · ω

(n−1)(n−2)
n




f1(1)

f2(1)
...

fn−1(1)

 =


0

0
...

0

 .

所以该方程只有平凡解f1(1) = · · · = fn−1(1) = 0. 也就是∀i : (x− 1) | fi(x).

Exercise 20

已知三次方程x3 + px2 + qx+ r = 0, 求另一多项式方程使得其三根分别为前

一方程三根的立方.

Solution 20

不妨设原多项式方程的三根为a, b, c. 我们要求一个方程使其根为a3, b3, c3.

由韦达定理, 新方程的系数为−(a3 + b3 + c3), a3b3 + a3c3 + b3c3, −a3b3c3. 现在的
问题是: 如何将这些系数用p, q, r表示出来? 答案是利用对称多项式和基本对称

多项式的关系!

先计算a3 + b3 + c3 = (a+ b+ c)3 − 3(a+ b+ c)(ab+ ac+ bc) + 3abc, 这可以

通过由化对称多项式为基本对称多项式的组合的算法得到, 或是直接利用牛顿恒

等式.
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第一章 多项式 17

再来计算a3b3 + a3c3 + b3c3, 这里注意我们可以利用前一步的结果 (不要浪费

人生的宝贵时间在多余的计算上)!

a3b3 + a3c3 + b3c3

= (ab)3 + (ac)3 + (bc)3

= (ab+ ac+ bc)3 − 3(ab+ ac+ bc)(a2bc+ ab2c+ abc2) + 3a2b2c2

= (ab+ ac+ bc)3 − 3(ab+ ac+ bc)(a+ b+ c)(abc) + 3(abc)2

最后a3b3c3 = (abc)3. 故


a3 + b3 + c3 = −p3 + 3pq − 3r

a3b3 + a3c3 + b3c3 = q3 − 3pqr + 3r2

a3b3c3 = −r3
.

所以所要求的方程是z3 + (p3 − 3pq + 3r)z2 + (q3 − 3pqr + 3r2)z + r3 = 0

另解: 也可通过定理1直接计算得到结果, 计算x3 + px2 + qx + r与x3 − z关

于x的结式:

Res(x3+px2+qx+r, x3−z) = −r3+(−q3+3pqr−3r2)z+(−p3+3pq−3r)z2−z3

这与我们之前的计算结果是一样的. 这体现了结式的另一作用: 从一组多元多项

式中消去一个变元.

Exercise 21

a1, a2, . . ., an两两不同, 求证: 关于x1, . . ., xn的线性方程组
1 a1 · · · an−1

1

1 a2 · · · an−1
2

...
...

. . .
...

1 an · · · an−1
n




x1

x2
...

xn

 =


−an1
−an2
...

−ann


有唯一解, 并求出这组解来.

Solution 21

由Vandermonde矩阵性质立即知道该方程组由唯一解. 为求出解: 将等号右

边的常数项挪到等号左边, 第i行变成:

x1 + x2ai + x3a
2
i + · · ·+ xna

n−1
i + ani = 0
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18 第一章 多项式

令f(z) = zn +
∑n

k=1 xkz
k−1, 则∀i : f(ai) = 0. 即a1, . . ., an为n次多项式f(z)的全

部n个根. 于是

f(z) = (z − a1) · · · (z − an) = zn +
n∑

k=1

xkz
k−1

由韦达定理展开比较系数知:
x1 = (−1)nσn(a1, . . . , an)

x2 = (−1)n−1σn−1(a1, . . . , an)
...

xn = −σ1(a1, . . . , an)

,

其中σ1, . . ., σn是基本对称多项式.

注记: 事实上也可通过Cramer法则暴力计算出每一个xi, 这涉及到计算缺

项Vandermonde行列式, 可以通过加边完成计算, 有兴趣的读者可以自行尝试.

Exercise 22

设数域K上n级矩阵A的特征多项式为

|λI − A| =
s∏

i=1

(λ− λi)
li .

对于任意正整数m，证明Am的特征多项式为

|λI − Am| =
s∏

i=1

(λ− λmi )
li .

Solution 22

先证明det(λI − kA) =
∏s

i=1(λ− kλi)
li . 注意到

det(k(λI − A)) = kn · det(λI − A) = kn
s∏

i=1

(λ− λi)
li =

s∏
i=1

(kλ− kλi)
li .

再以λ取代kλ即得.
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第一章 多项式 19

考虑λm − 1 =
∏m

i=1(λ−ωi
m), 其中ωm = cos 2π

m
+ sin 2π

m

√
−1为m次单位根. 那

么我们有

det(λmI − Am) = det
m∏
i=1

(λI − ωi
mA) =

m∏
i=1

det(λI − ωi
mA) =

m∏
i=1

s∏
j=1

(λ− ωi
mλj)

lj

=
s∏

j=1

m∏
i=1

(λ− ωi
mλj)

lj =
s∏

j=1

(
m∏
i=1

(λ− ωi
mλj)

)lj

=
s∏

j=1

(λm − λmj )
lj .

于是以λ取代λm即得结论.

注记: 此做法稍显技巧性, 事实上在学习相似标准形相关理论后我们将立刻

得到谱映射定理: 若A的特征值为λ1, . . . , λn (相同特征值按重数写出), 则P (A)的

特征值为P (λ1), . . . , P (λn).

Exercise 23

设f(x), g(x) ∈ K[x], K[x]中的一个多项式m(x)称为f(x)与g(x)的一个最小公

倍式，如果

i) f(x)|m(x), g(x)|m(x);

ii) f(x)与g(x)的任一公倍式都是m(x)的倍式.

(1) 证明K[x]中任意两个多项式都有最小公倍式, 且在相伴意义下是唯一的;

(2) 用lcm(f, g)表示首一的最小公倍式, 证明: 如果f(x), g(x)也是首一的, 那么有

lcm(f, g) =
f · g

gcd(f, g)
.

Solution 23

显然f与g存在公倍式 (如: fg). 考虑全体公倍式构成集合

S = {h ∈ K[x] | f |h, g|h} ,

则存在非零的l ∈ S使得deg l = minh∈S deg h (自然数的良序性). 任取h ∈ S, 考虑

对l做带余除法: h = ql + r (deg r < deg l). 由于f既整除h又整除l, 必然有f也整
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20 第一章 多项式

除r. 同理可知g整除r, 这样就有r ∈ S. 由于l的选取满足次数最小而r次数小于l,

这就迫使r = 0, 即l整除h.

若有两个不同的l1, l2均满足次数最小, 令a1, a2分别为它们的首项系数, 那

么m = a2h1 − a1h2既被f整除, 又被g整除, 且degm < deg h1 = deg h2 (注意到首

项互相抵消). 这样必须有m = 0, 因此l1, l2相伴, 最小公倍式在相伴意义下是唯一

的.

已知f , g和d = gcd(f, g),现在我们来具体构造出来一个最小公倍式. 设f0, g0 ∈
K[x]满足f = f0d, g = g0d, 令l = f0g0d. 则l = fg0 = f0g = fg

d
是一个f和g的

公倍式. 再来说明l的确是最小的. 设m = af = bg是任意选取的f, g的公倍式,

由Bézout等式知存在多项式u, v使得d = uf + vg. 于是

md = m(uf + vg) = bguf + afvg = (av + bu)fg = (av + bu)dl.

因为多项式环是整环, 两边同时消去d得m = (av + bu)l是l的倍式, 依定义知l就是

最小的公倍式, 证毕.

Exercise 24

设A ∈ Mn(K), f(x), g(x) ∈ K[x]. 证明: 如果d = gcd(f, g), 则齐次线性方程

组d(A)X = 0的解空间等于f(A)X = 0的解空间和g(A)X = 0的解空间的交.

Solution 24

只要证明ker d(A)和ker f(A) ∩ ker g(A)互相包含即可.

若X ∈ ker d(A), 由d = gcd(f, g)知存在多项式f0, g0使得f = f0d, g = g0d.

于是f(A)X = f0(A)d(A)X = 0, 同理g(A)X = g0(A)d(A)X = 0, 此即X ∈
ker f(A) ∩ ker g(A). 故ker d(A) ⊆ ker f(A) ∩ ker g(A).

反之,由Bézout等式知存在多项式u, v使得d = uf+vg. 于是任取X ∈ ker f(A)∩
ker g(A), 我们都有

d(A)X = (u(A)f(A) + v(A)g(A))X = u(A)f(A)X + v(A)g(A)X = 0 + 0 = 0.

所以ker f(A) ∩ ker g(A) ⊆ ker d(A). 这样就有ker f(A) ∩ ker g(A) = ker d(A).

xiaxueqaq 2022-2024



第一章 多项式 21

Exercise 25

设A ∈Mn(K), f(x), g(x) ∈ K[x]. 证明: 如果gcd(f, g) = 1,则ker f(A)g(A) =

ker f(A)⊕ ker g(A).

Solution 25

由Bézout等式知存在多项式u, v使得1 = uf+vg. 现在任取X ∈ ker f(A)g(A).

令X1 = u(A)f(A)X, X2 = v(A)g(A)X, 则显然有

X1 +X2 = (u(A)f(A) + v(A)g(A))X = I ·X = X.

因为g(A)X1 = g(A)u(A)f(A)X = u(A)fg(A)X = 0, 所以X1 ∈ ker g(A), 同

理X2 ∈ ker f(A). 这样就证明了ker f(A) + ker g(A) = ker f(A)g(A).

最后说明这是一个直和,由上一例题知ker f(A)∩ker g(A) = ker gcd(f, g)(A) =

ker I = 0. 所以这的确是一个直和.

Exercise 26

求一不可约整系数多项式f(x) ∈ Z[x]使得
√
2 +

√
3为其一根.

Solution 26

考虑多项式p(x) = x2 − 2和q(x) = x2 − 3, 显然它们分别以
√
2和

√
3为根. 考

虑方程组p(x) = q(y− x) = 0, 则显然x =
√
2, y =

√
2+

√
3为其一组解. 若能从方

程组中消去x, 那么就能得到一个以
√
2 +

√
3为根的方程.

将p(x) = x2 − 2和q(y− x) = (y− x)2 − 3 = x2 − 2yx+ y2 − 3看成以x为变元

的方程, 由结式的基本性质知x2 − 2 = 0和x2 − (2y)x+ (y2 − 3) = 0有公共解当且

仅当它们的结式为0.

于是计算Resx(x
2 − 2, x2 − (2y)x + (y2 − 3)) =

∣∣∣∣∣∣∣∣∣∣
1 1

0 1 −2y 1

−2 0 y2 − 3 −2y

−2 y2 − 3

∣∣∣∣∣∣∣∣∣∣
=

y4 − 10y2 + 1. f(x) = x4 − 10x2 + 1为所要求的多项式.
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22 第一章 多项式

再来说明f确实不可约. 我们将使用Eisenstein判别法, 先令x = y + 1, 对f做

变量替换得到g(y) = f(x− 1) = y4 − 4y3 − 4y2 + 16y − 8. 显然f在Z上不可约当
且仅当g在Z上不可约. 再进一步令y = 2z, 得到

h(z) = g(2z) = 8
(
2z4 − 4z3 − 2z2 + 4z − 1

)
.

由Gauss引理知g在Z上不可约⇔ g在Q上不可约⇔ h在Q上不可约⇔ r(z) = (2z4−
4z3 − 2z2 + 4z − 1)在Q上不可约.

考虑r(z)的互反多项式z4r(1
z
) = −z4 + 4z3 − 2z2 − 4z + 2满足Eisenstein判别

法的使用条件 (p = 2), 这样就有r(z)在Q上不可约 (想一想为什么). 于是f确实是

一个不可约多项式.

注记: 本题中的f虽然在Z上不可约,但是模p方法不能用来说明f的不可约性.

这是因为对于任意素数p, f在Fp[x]中的像都是可约多项式. 事实上

x4 − 10x2 + 1 =
(
x2 − 2

√
2x− 1

) (
x2 + 2

√
2x− 1

)
=

(
x2 − 2

√
3x+ 1

) (
x2 + 2

√
3x+ 1

)
=

(
x2 − 2

√
6− 5

) (
x2 + 2

√
6− 5

)
.

注意到勒让德符号
(

a
p

)
是完全积性函数, 所以在模p意义下, 要么2是二次剩余, 要

么3是二次剩余, 要么2,3都是二次非剩余从而6是二次剩余. 因此无论如何,
√
2,

√
3和

√
6中至少有一个存在于Fp中. 所以上面的三个分解式总有一个成立.

练习: 若α, β为两代数数 (代数数: 存在有理系数多项式以其为根), 证明α +

β, αβ以及α
β
(β ̸= 0)也都是代数数.

更难的练习: 若α, β为两代数整数 (代数整数: 存在首一整系数多项式以其为

根), 证明α + β和αβ也都是代数整数.

Exercise 27

设K是一数域, R是K的一个交换扩环. 设a ∈ R, 记

Ja = {f(x) ∈ K[x]|f(a) = 0}

且Ja ̸= {0}. 证明:

(1) Ja中存在唯一的首一多项式m(x), 使得Ja的每个多项式都是m(x)的倍式.

(2) 如果R是无零因子环, 则m(x)在K[x]中不可约.
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Solution 27

(1) 取Ja中次数最小的非零多项式m(x), 并不妨设其为首一多项式(因为f以a为

根当且仅当所有与f相伴的多项式也以a为根). 则任取f ∈ Ja, 考虑f对m做带

余除法得

f = qm+ r deg(r) < deg(m).

由于f(a) = m(a) = 0,这迫使r(a) = 0. 从而r(x) ∈ Ja. 但是deg r < degm,这

样只能有r = 0. 所以Ja中所有多项式都是m的倍式. 这样的首一多项式的唯

一性是显然的.

(2) 不妨设m = p·q (deg p, deg q ≥ 1)是一个非平凡分解,则m(a) = p(a)·q(a) = 0.

但是因为R是无零因子环, 这样要么p(a) = 0, 要么q(a). 无论如何都有次数更

低的多项式p或者q落在Ja中, 与m的选取矛盾. 因此m必须是不可约的.
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第二章 线性空间和线性变换

Exercise 28 (子空间的并)

设V是无限域F上的有限维线性空间, V1, . . . , Vs是V的s个真子空间. 求证:

(1) 存在α /∈
⋃s

k=1 Vk;

(2) 存在V的一组基e1, . . ., en均不落在
⋃s

k=1 Vk中.

Solution 28

(1) 对子空间个数做归纳:

当s = 1时, 结论是显然的.

假设我们的结论已经对s − 1成立: ∃α /∈ V1 ∪ · · · ∪ Vs−1. 若α /∈ Vs则无需再

证, 因此接下来假设α ∈ Vs. 选取F中s个不同元素c1, c2. . . ., cs (F是无限

域)和β /∈ Vs. 我们断言: 在s个向量

c1α + β, . . . , csα + β

中必有一者不落在V1 ∪ · · · ∪ Vs−1中. 假设我们的断言不成立, 那么由抽屉原

理, s个向量全部落在s − 1个子空间的并中, 必定有一个子空间至少有两个向

量ciα + β和cjα + β. 这样它们之差(ci − cj)α就落在这个子空间中, 与我们

对α的选取矛盾. 于是我们的断言成立.

令ciα+ β为断言中不落在V1 ∪ · · · ∪ Vs−1中的向量, 由α ∈ Vs但β /∈ Vs知, ciα+

β /∈ Vs. 于是我们最终得到归纳假设对s也成立: ciα+ β /∈ V1 ∪ · · · ∪ Vs−1 ∪ Vs.
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26 第二章 线性空间和线性变换

(2) 反复利用(1)即可,先用(1)取出e1,然后对V1, . . . , Vs, Vs+1 := span(e1)利用(1)取

出e2, 再对V1, . . . , Vs, Vs+1 := span(e1, e2)利用(1)取出e3. 以此类推直到Vs+1张

成整个全空间V .

Exercise 29 (Fitting Lemma)

设V是有限维线性空间, φ : V → V为其上一线性变换, 证明:

∃n ∈ N+ s.t. V = kerφn ⊕ imφn.

Solution 29

先来证明两个链条件:

∃m ∈ N+ s.t. kerφm = kerφm+1 = kerφm+2 = · · ·
kerφm = kerφm+1 = kerφm+2 = · · ·

(2.1)

事实上我们总是有：

kerφ ⊆ kerφ2 ⊆ kerφ3 ⊆ · · ·
imφ ⊇ imφ2 ⊇ imφ3 ⊇ · · ·

于是有

dimkerφ ≤ dimkerφ2 ≤ dimkerφ3 ≤ · · · ≤ n

dim imφ ≥ dim imφ2 ≥ dim imφ3 ≥ · · · ≥ 0

最后的不等号是由于链中出现的线性空间都是V的子空间, 因此它们的维数总是

大于等于0, 小于等于n. 这迫使以上两个不等式在m充分大后总是取到等号. 因

此我们总是有链条件2.1成立.

再证明直和式V = kerφm ⊕ imφm成立, 为此:

1. 说明直和:kerφm ∩ imφ = 0 若x ∈ kerφm ∩ imφm, 则φm(x) = 0, 存在y ∈
V使得φm(y) = x, 这样就有φ2m(y) = 0. 但是由于链条件kerφm = kerφ2m,

y也属于kerφm = kerφ2m, 这样就迫使x = φm(y) = 0.

2. 再来找到直和分解: ∀x ∈ V : ∃y ∈ kerφm, z ∈ imφm s.t. x = y + z.

注意到φm(x) ∈ imφm = imφ2m : ∃z ∈ imφm s.t. φm(z) = φm(x)

xiaxueqaq 2022-2024
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∴ x = (x− z) + z

其中x− z ∈ kerφm, z ∈ imφm.

注记1: 证明中我们没有用到维数公式, 事实上这是模论中Fitting Lemma的

特例, 原条件为V为一Noetherian且Artinian模, 对应我们一开始证明的两个链条

件.

注记2: 也可借助Jordan块和Jordan标准形处理. 考虑0-Jordan块和非0-Jordan块

即可.

Exercise 30

令V = F [x]5 = {f ∈ F [x]| deg f < 5}为次数小于5的全体多项式构成的线性

空间.

再设W1为x
2 − 1, x(x2 − 1), x2(x2 − 1)所张成的线性空间, W2为x

3 + 3x2 +

3x+ 1, x4 + 4x3 + 6x2 + 4x+ 1所张成的线性空间.

(1) 求一组W1 ∩W2的基,

(2) 求一组W1 +W2的基.

Solution 30

(1) 注意到

W1 =
{
f ∈ F [x]

∣∣(x2 − 1
)
|f, deg f < 5

}
和

W2 =
{
f ∈ F [x]

∣∣(x+ 1)3 |f, deg f < 5
}
.

这样W1 ∩ W2 = {f ∈ F [x]|(x2 − 1), (x+ 1)3|f, deg f < 5}. 即全体次数小
于5的x2 − 1和(x + 1)3的公倍式. 而这两个多项式的最小公倍式为m(x) =

(x+ 1)3(x− 1)次数为4, 所以{m(x)}为W1 ∩W2的一组基.

(2) 显然任何(x2 − 1), x(x2 − 1), x2(x2 − 1)和(x + 1)3, (x + 1)4的F -线性组合都

是x+1的倍式, 于是W1 +W2 ⊆ ⟨x+1, (x+1)x, (x+1)x2, (x+1)x3⟩. 由维数
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公式知

dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2) = 3 + 2− 1 = 4.

所以上面的包含实际上是等号, W1 + W2的一组基为x + 1, (x + 1)x, (x +

1)x2, (x+ 1)x3.

注记: 这里我们借助多项式环的性质避免了具体基的计算, 请同学们自行选

取一组V的基, 用这组基具体计算子空间W1和W2的交与和, 并与这里的解法对比.

Exercise 31

令V = R3, S ⊂ V为V中由2x − 2y + z = 0定义的子空间, P : V → S ⊂
V为V到S的投影映射.

(1) 求P在标准基e1, e2, e3下的矩阵A

(2) 计算A2

(3) 求证V = kerP ⊕ imP

Solution 31

(1) 令α = (2,−2, 1)T . 注意到S = {x ∈ V |αTx = 0}, 即α为S的法向量. 则投影方

向由α确定, 投影后向量为Pei = ei − λiα满足:

αT (ei − λiα) = 0 =⇒ λi =
αT ei
αTα

求得λ1 =
2
9
, λ2 = −2

9
, λ3 =

1
9
.

于是Pe1 = (5
9
, 4
9
,−2

9
)T , Pe2 = (4

9
, 5
9
, 2
9
)T , Pe3 = (−2

9
, 2
9
, 8
9
)T . 矩阵A为


5
9

4
9

−2
9

4
9

5
9

2
9

−2
9

2
9

8
9

.

(2) 直接计算得A2 = A.
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(3) 由A2 = A知是直和, 且

∀v ∈ V : x = (x− Ax) + Ax

∈ ∈

kerP imP

注记: 事实上, 投影算子就是由幂等定义的: P 2 = P , 这很容易想象: 所谓投

影, 就是把高维空间中的物体(如牛奶盒)一脚踩扁踩到低维空间中去(踩瘪了的牛

奶盒), 那当然踩一脚和踩两脚没有什么区别.

Exercise 32 (脑筋急转弯)

令P =

(
1 −2

−2 −1

)
, 定义L :

Cn×n → Cn×n

A 7→ P−1AP

(1) 求P的极小多项式;

(2) 求L的极小多项式.

Solution 32

(1) 直接计算P 2 =

(
−3 0

0 −3

)
, 所以mP (x) = x2 + 3.

(2) 同样直接计算L2(A) = P−1(P−1AP )P = P−2AP 2 = (−1
3
I)A(−3I) = A, 所

以mL(x) = x2 − 1.

Exercise 33

设A ∈ Cn×n的全体特征值为λ1, . . . , λn. A = (aij). 求证

n∑
i=1

λ2i =
n∑

i=1

n∑
j=1

aijaji

.
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Solution 33

由谱映射定理知:
∑n

i=1 λ
2
i = trA2 =

∑n
i=1(A

2)ii =
∑n

i=1

∑n
j=1 aijaji.

注记: 这个做法是我在习题课上从同学们那学来的, 原本的做法相对复杂.

Exercise 34 (域扩张)

令h(x) ∈ Q[x]为Q上一不可约多项式 (deg h = n), α ∈ C满足h(α) = 0.

F = {f(α)|f ∈ Q[x]}.

(1) 求证F为一域;

(2) 求证F为Q上线性空间, dimF = n.

Solution 34

(1) 显然F关于加法乘法是封闭的, 我们只要说明非零元在F中都有乘法逆元即

可. 若f ∈ Q[x]满足f(α) ̸= 0, 则gcd(f, h) = 1 (h不可约). 因此存在u, g ∈
Q[x]使得f(x)g(x) + u(x)h(x) = 1. 则g(α)即为所欲求的乘法逆元.

(2) 由F的定义显然可以知道F为Q上的线性空间, 并且1, α, α2, . . . , αn−1 ∈ F . 只

要再说明它们构成一组基即可.

首先1, α, α2, . . . , αn−1的确张成整个F , 为观察到这一点, 只需要注意到任何

高于n次的多项式f ∈ Q[x]与f模掉h产生的余式在F中产生相同的像. 即f =

q · h+ r (deg r < deg h)蕴含f(α) = r(α).

再来说明线性无关性, 假设存在c0, . . . , cn−1使得

n−1∑
k=0

ckα
k = 0,

则f(x) =
∑n−1

k=0 ckx
k满足f(α) = 0, 但deg f ≤ deg h, h不可约, 这样就只能

有f = 0. 因此1, α, α2, . . . , αn−1的确构成F的一组基.

注记: F是Q的一个扩张, F/Q称为域扩张, F作为Q−线性空间的维数dimQ(F )称

为F/Q的扩张次数.
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Exercise 35

设V是n维F−线性空间, U , W ⊆ V分别为V的m, r维子空间,且满足条件U+

W = V . 记

S = {A ∈ Hom(V, V )|A(U) ⊆ U,A(W ) ⊆ W}

(1) 证明S是Hom(V, V )的子空间;

(2) 求dimS.

Solution 35

(1) 显然, 若U , W都是A1, A2 ∈ Hom(V, V )的不变子空间. 则U , W也是k1A1 +

k2A2 (k1, k2 ∈ F )的不变子空间. 于是S是Hom(V, V )的子空间.

(2) 先来看简单的情形, 如果V = U ⊕ W . 那么分别选取U和W的一组基合并

成V的一组基. 由于U和W都是A−不变的, 在这组基下A ∈ S的矩阵形如

∗ O

O ∗

 m

m

r

r

. 此时dimS = m2 + r2.

再看一般的情况,选取U ∩W的一组基e1, . . ., ed,由维数公式知d = m+ r−n.

分别扩充成一组U的基和一组W的基, 合并成一组V的基. 由于U , W , U ∩

W都是A−不变的, 此时A的矩阵形如:
∗ O O
∗ ∗ ∗
O O ∗




m

m

r

r
d

d
.

由小学知识计算∗部分面积知:

dimS = m2 + r2 − d · n = m2 + r2 + n(n−m− r).

Exercise 36

设A ∈ Rn×n. 对α, β ∈ Rn, 定义f(α, β) = αTAβ. 若∀α ∈ Rn : f(α, α) = 0.

求A满足的条件.
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Solution 36

由f(α, α) = αTAα = 0知(αTAα)T = αTATα = 0. 相加得到αT (AT + A)α =

0 (∀α). 但是A+AT是实对称方阵, 故A+AT定义的二次型为0. 于是A+AT = 0,

即A = −AT , A反对称.

反之由反对称方阵A定义的f一定满足∀α ∈ Rn : f(α, α) = 0.

注记: 当A可逆的时候这样的f定义了所谓的”辛内积” (这个条件对维数n有

什么要求吗?).

Exercise 37 (Cochran分解)

若s个n阶方阵A1, . . ., As满足
∑s

k=1Ak = In. 求证以下三条等价:

(i) ∀k ∈ {1, 2, . . . , s} : A2
k = Ak;

(ii)
∑s

k=1 rankAk = n;

(iii) ∀i, j ∈ {1, 2, . . . , s}(i ̸= j) : AiAj = O.

Solution 37

(i) =⇒ (ii): 由A2
k = Ak知Ak的最小多项式整除x

2 − x, 因此Ak可对角化, 特

别地rankAk = trAk. 所以

s∑
k=1

rankAk =
s∑

k=1

trAk = tr
s∑

k=1

Ak = tr In = n.

(ii) =⇒ (iii): 因为n = rank
∑s

k=1Ak ≤
∑s

k=1 rankAk = n, 所以Fn =⊕s
k=1 imAk为直和 (思考: 为什么?). 于是对任意v ∈ Fn有唯一直和分解:

v =
s∑

k=1

vk (vk ∈ imAk)

但是Inv = v =
∑s

k=1Akv也是直和分解. 这迫使vk = Akv.

而对任意w ∈ imAj, w的直和分解式中i ̸= j处都是0, 所以Aiw = 0. 于

是imAj ⊆ kerAi, 也就是AiAj = O.
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(iii) =⇒ (i):

Ak = AkIn = Ak

s∑
j=1

Aj = A2
k.

注记: 在未来的学习中同学们还将见到许多形式与本例类似的定理: 如统计

中的Cochran定理, 交换代数中的Artin环结构定理, 微分流形中的单位分解以及

群表示论等等.

Exercise 38 (同时可对角与可交换)

若域F上n阶方阵A和B可对角化, 证明:

∃P ∈ GLn(F ) s.t. D1 := P−1AP , D2 := P−1BP均为对角阵 ⇔ AB = BA.

Solution 38

⇒: 这是简单的一边:

AB = (PD1P
−1)(PD2P

−1) = PD1D2P
−1 = PD2D1P

−1 = (PD2P
−1)(PD1P

−1) = BA

因为对角阵乘法可交换.

⇐: 首先回忆可对角化的含义:

A可对角化 ⇔ A的全体特征子空间直和为全空间

⇔ 存在一组A的特征向量构成全空间的基

⇔ A的最小多项式无重根

记A的全体特征值为Spec(A) = {λ1, . . . , λs}. V为全空间, Vλi
为从属于特征

值λi的特征子空间, 则:

V =
s⊕

i=1

Vλi

注意到∀v ∈ Vλi
:

A(Bv) = B(Av) = B(λiv) = λi(Bv) (v ∈ Vλi
)

从而Bv也是一个从属于λi的A的特征向量, 它落在Vλi
中. 因此Vλi

为B-不变子空

间.
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而B可对角化,所以它在Vλi
上的限制B |Vλi

也可对角化 (想一想,为什么?). 于

是Vλi
中存在一组基βi,1, . . . , βi,dimVλi

为B的特征向量. 显然它们也是A的特征向量.

这样

β1,1, . . . , β1,dimVλ1
, . . . , βi,1, . . . , βi,dimVλi

, . . . , βs,1, . . . , βs,dimVλs

就构成了V的一组基, 将它们排成矩阵P即可同时对角化A和B.

注记: 也可采用矩阵证法,但相当繁琐: 先将A对角化到


λ1I

λ2I
. . .

λsI

,

这样将B过渡到分块对角阵


∗

∗
. . .

∗

, 再分别对角化每一块. 这么做的背后

实质仍是我们上面的线性映射观点.
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Exercise 39

设f, g, φ, ψ ∈ K[λ], 且f, g分别与φ, ψ互素. 求证:(
fφ

gψ

)
∼

(
gφ

fψ

)

Solution 39

分别计算行列式因子, 对第一个λ-矩阵:

D1 = gcd(fφ, gψ) = gcd(f, gψ) gcd(φ, gψ) = gcd(f, g) gcd(φ, g) gcd(f, ψ) gcd(φ, ψ)

= gcd(f, g) gcd(φ, ψ),

D2 = fgφψ

对第二个λ-矩阵有:

D1 = gcd(gφ, fψ) = gcd(g, fψ) gcd(φ, fψ) = gcd(g, f) gcd(g, ψ) gcd(φ, f) gcd(φ, ψ)

= gcd(f, g) gcd(φ, ψ),

D2 = fgφψ

由λ-矩阵相抵当且仅当具有相同的秩和行列式因子知两矩阵相抵.

注记: 也可通过相抵操作一步步转化过去, 相较这里展示的做法稍显繁琐.

Exercise 40

令N =


0 1

.
.
.

.
.
.

.
.
. 1

0

 ∈ Fn×n. 求N2, N3, . . ., Nn.
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Solution 40

令自然基为e1, e2, . . ., en. 则显然:Nen = en−1, Nen−1 = en−2, · · · , Ne2 = e1,

Ne1 = 0. 而N = (0, e1, e2, . . . , en−1). 因此

N2 = N ·N = N(0, e1, e2, . . . , en−1) = (0, 0, e1, . . . , en−2)

N3 = N ·N2 = N(0, 0, e1, . . . , en−2) = (0, 0, 0, . . . , en−3)
...

Nn−1 = N ·Nn−2 = N(0, 0, . . . , e1, e2) = (0, 0, . . . , 0, e1)

Nn = N ·Nn−1 = N(0, 0, . . . , 0, e1) = (0, 0, . . . , 0, 0) = O

注记: 将Nk矩阵具体写出来就知道, 每乘一个N , 主对角线上方的一排1就向

右上角移动一位.

Exercise 41

设A ∈ Cn×n, A的最小多项式为xn. 求Ak的Jordan标准形.

Solution 41

由A的最小多项式为xn立知

A ∼ N =


0 1

. . . . . .
. . . 1

0

 .

以下只需考虑N , 自然基在N的作用下有如下箭头图:

0
N 7−→e1

N 7−→e2
N 7−→· · · N 7−→en

于是自然基在Nk的作用下的箭头图为:

0
Nk 7−→e1

Nk 7−→ek+1
Nk 7−→· · ·

0
Nk 7−→e2

Nk 7−→ek+2
Nk 7−→· · ·
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...

0
Nk 7−→ek

Nk 7−→e2k
Nk 7−→· · ·

一直延长上面的箭头图, 延长到哪里会结束呢?

令n = q · k + r为n除以k的带余除法. 则:

0
Nk 7−→ e1

Nk 7−→ ek+1
Nk 7−→ · · · Nk 7−→ e(q−1)k+1

Nk 7−→ eqk+1

0
Nk 7−→ e2

Nk 7−→ ek+2
Nk 7−→ · · · Nk 7−→ e(q−1)k+2

Nk 7−→ eqk+2

...
...

...
. . .

...
...

0
Nk 7−→ er

Nk 7−→ ek+r
Nk 7−→ · · · Nk 7−→ e(q−1)k+r

Nk 7−→ en

0
Nk 7−→ er+1

Nk 7−→ ek+r+1
Nk 7−→ · · · Nk 7−→ e(q−1)k+r+1

...
...

...
. . .

...

0
Nk 7−→ ek

Nk 7−→ e2k
Nk 7−→ · · · Nk 7−→ eqk

每一行箭头图都是一个循环子空间, 所有行对应循环子空间的直和是Cn. 因此

每个循环子空间对应一个Nk的Jordan块. 每一行箭头图的长度就是这一循环子

空间的维数, 也就是这一个Jordan块的大小, 因此Nk的Jordan标准形有r个大小

为q + 1的0−Jordan块, k − r个大小为q的0−Jordan块.

Exercise 42

如何计算Jordan标准形? 能否通过Jordan标准形得到有理标准形?

Solution 42

课上已经学过先计算Smith标准形, 再由不变因子计算初等因子和Jordan块

的方法, 还有别的方法吗?

设n阶方阵A ∼

(
J1

.
.
.

Js

)
, 不妨设前r个Jordan块J1, . . ., Jr对角线上为λ,

Jr+1, . . ., Js对角线上不为λ. 则A− λI ∼

(
J1 − λI

.
.
.

Js − λI

)
. 由相似的矩阵秩相

同以及分块对角阵秩等于各块秩之和知: n− rank(A− λI) = r, 于是从rank(A−
λI)可以计算出从属于λ的Jordan块个数 (即至少为一阶的λ−Jordan块数量).
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进一步地, (A − λI)2 ∼

(
(J1 − λI)2

.
. .

(Js − λI)2

)
, 再由练习40知道平方后所有

大于等于2阶的λ−Jordan块秩减少1, 而一阶的Jordan块秩仍是0. 因此rank(A −
λI)− rank(A− λI)2是至少2阶的λ−Jordan块数量.

一般地, rank(A − λI)t−1 − rank(A − λI)t是至少t阶的λ−Jordan块数量. 于

是将至少t阶的Jordan块数量与至少t + 1阶的Jordan块数量作差就得到恰好t阶

的Jordan块数量.

这样我们就得到了计算A的Jordan标准形的算法:

Step 1. 计算A的特征多项式det(λI − A);

Step 2. 解方程det(λI − A) = 0得到全体特征值λ1, . . ., λm;

Step 3. 对每个特征值λi,

(3a). 计算秩: r0 = n, r1 = rank(A− λiI), r2 = rank(A− λiI)
2, · · · ;

(3b). 计算至少k阶的Jordan块数量: d1 = r0 − r1, d2 = r1 − r2, · · · ;

(3c). 计算恰好k阶的Jordan块数量: c1 = d1 − d2, c2 = r2 − r3, · · · .

例如, 令

A =



1 1 0 −1 −1 1

0 2 0 −1 −1 1

1 1 1 0 0 1

0 0 0 1 0 0

0 −1 0 1 2 −1

0 −2 0 1 2 −1


∼



1

1 1

1

1 1

1 1

1


计算

A− I =



0 1 0 −1 −1 1

0 1 0 −1 −1 1

1 1 0 0 0 1

0 0 0 0 0 0

0 −1 0 1 1 −1

0 −2 0 3 2 −2


, rank(A− I) = 3
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计算

(A− I)2 =



0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 −2 0 0


, rank(A− I)2 = 1

而(A− I)3 = O.

于是(r0, r1, r2, r3) = (6, 3, 1, 0), (d1, d2, d3) = (3, 2, 1), (c1, c2, c3) = (1, 1, 1). 分

别对应一块1, 2, 3阶Jordan块.

再来考虑从Jordan标准形求有理标准形. 首先, Jordan标准形对应的是代数

闭域上一元多项式环的有限生成扭模的第一标准分解, 即每个Jordan块对应一个

初等因子. 而有理标准形对应的是一般域上一元多项式环的有限生成扭模的第二

标准分解, 即每个Frobenius矩阵对应一个不变因子. 我们知道从初等因子容易求

得不变因子, 而不变因子不随域扩张改变, 因此从Jordan标准形确实可以求得有

理标准形. 下面来看一个例子, 假设已知矩阵A的Jordan标准形为

diag

(
1,

(
1 1

0 1

)
,−1,−1

)
.

则A的初等因子为x − 1, (x − 1)2, x + 1, x + 1. 回忆从初等因子求不变因子的过

程, 每次从初等因子组中选取每个不可约因式的一个最大幂次, 相乘得到一个不

变因子, 将本次选取的初等因子从初等因子组中删去, 重复上述过程直到初等因

子组为空. 于是A的不变因子就为(x− 1)(x + 1), (x− 1)2(x + 1). 我们知道, 有理

标准形由若干个Frobenius矩阵构成, 每个Frobenius矩阵是一个不变因子的友阵

(companion matrix), 这样就可以写出A的有理标准形:

diag


(
0 1

1 0

)
,


0 0 −1

1 0 1

0 1 1




Exercise 43

F ⊆ K为两个域, A,B ∈ F n×n, 求证:

A, B在F上相似⇔ A, B在K上相似.
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Solution 43

⇒: 显然的.

⇐: A, B在K上相似, 于是λI − A和λI − B在K上相抵, 又注意到我们在

计算Smith标准形时每一步计算都不会离开原来的域, 即:F [λ]系数矩阵λI − A在

每一步等价变化后得到的仍是F [λ]系数矩阵. 所以最终得到的Smith标准形也

是F [λ]系数矩阵: λI − A的不变因子都是F [λ]中多项式. 同理λI − B的不变因

子都是F [λ]中多项式. 又由两者在K上相抵得到它们的秩和不变因子相等, 于

是λI − A和λI −B在F上也相抵, A和B在F上相似.

特别地有: 若F为一数域, 则:

A,B在F上相似当且仅当它们在C上相似.

Exercise 44

设F为一数域, 证明A与AT相似.

Solution 44

令S =

(
1

. .
.

1

)
, 则S−1 = S, 且

S−1


a11 · · · a1n
...

. . .
...

an1 · · · ann

S = S


a11 · · · a1n
...

. . .
...

an1 · · · ann

S =


ann · · · an1
...

. . .
...

a1n · · · a11

 .

令A在C上的Jordan标准形为diag(J1, . . . , Jr), 其中每个Jk为一Jordan块. 则

容易发现AT相似于diag(JT
1 , . . . , J

T
r ). 因此我们只要证明对于每个Jordan块Jk而

言有Jk ∼ JT
k就有A与A

T在C上相似, 再由练习43知A和AT在F上相似.

而

Jk =


λk 1

. . . . . .
. . . 1

λk

 , JT
k =


λk

1
. . .
. . . . . .

1 λk

 .

于是直接计算立即有S−1JkS = JT
k , 即Ji ∼ JT

i .
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注记: 通过Jordan标准形将问题约化到Jordan块的情形是一种应该掌握的常

用技巧. 事实上本题也可以通过计算两者的行列式因子直接比较得到结论, 我们

这么做是为了展示更多的思路.

Exercise 45

令C[x]n为全体不超过n次的复系数多项式组成的集合.

(1) 证明C[x]n是一个C−线性空间.

(2) 记D :
C[x]n → C[x]n

f 7→ f ′
为求导算子.

具体写出D在单项式基1, x, . . . , xn下的矩阵M , 并求M的Jordan标准形. 更进

一步地, 求矩阵P将M过渡到Jordan标准形.

(3) 问C[x]n在D下的所有不变子空间是什么.

Solution 45

(1) 这是显然的.

(2) 容易直接写出矩阵

M =



0 1

0 2
. . . . . .

. . . n

0


.

由于rankM = n = (n + 1) − 1, 且0就是所有特征值, 因此由练习42中给出的

算法知M的Jordan标准形中只有一个Jordan块, 即M ∼


0 1

.
.
.

.
.
.

.
.
. 1

0

.

进一步地, 令e1, . . ., en+1为自然基, 则en+1 = (0, . . . , 0, 1)T经过M反复作用后:

en+1
M7→ nen

M7→ n(n− 1)en−1
M7→ · · · M7→ n!e1,
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于是P = (n!e1, n!/1e2, . . . , en+1)将M过渡到Jordan标准形:


0 1

.
.
.

.
.
.

.
.
. 1

0

 =


n!

n!/1!

n!/2!

. .
.

1


−1


0 1

0 2

.
.
.

.
.
.

.
.
. n

0




n!

n!/1!

n!/2!

. .
.

1

 .

(3) 设W为一个C[x]n的D−不变子空间, f ∈ W为W中次数最高的多项式, deg f =

p, 则f, f ′, f ′′, . . . , f (p) ∈ W , 由于f (p)是常数, 它可以消去其它多项式的所有常

数项,类似地, f (p−1)和f (p)的线性组合可以消去其它多项式的所有一次项和常

数项· · · · · · 这样f, f ′, f ′′, . . . , f (p) ∈ W就与xp, xp−1, . . . , 1张成相同的线性空

间. 因此W = C⊕ Cx⊕ · · · ⊕ Cxp = C[x]p.

所以全部的D−不变子空间为0, C, C[x]1, . . ., C[x]n.

Exercise 46

设F是一无限域, V是一有限维F -线性空间, T为V上一线性变换. 证明T只有

有限个不变子空间当且仅当T的极小多项式等于特征多项式.

Solution 46

T的极小多项式等于特征多项式等价于V作为F [x]-模循环, 同构于F [x]/(f).

则F [x]/(f)显然只有有限个子模, 每个子模由f的一个因子生成 (或者用线性空间

的语言来说, 循环子空间的每个不变子空间仍是循环子空间, 于是每个非平凡不

变子空间都必须是f的某个因子作用在循环向量生成的循环子空间). 反之若不变

子空间有限, 那么考虑V =
⋃

v∈V F [x]v, 即所有V中向量v生成的循环模, 由于不

变子空间有限, 这个并实际上是有限并. 但是我们知道无限域上有限个真子空间

不能覆盖全空间 (回忆练习28), 因此必须有某个v生成的循环模是全空间, 即V是

循环模.

注记: 与练习45比较.
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Exercise 47

证明:

A =


−a0

1 −a1
. . .

...

1 −an−1


的极小多项式为f(x) = xn + an−1x

n−1 + · · ·+ a0.

Solution 47

令自然基为e1, . . ., en, 则Ae1 = e2, Ae2 = e3, · · · , Aen−1 = en, Aen =∑n−1
k=0 −akek+1. 因此对于任意次数小于n的多项式g(x) =

∑m
k=0 bkx

k:

g(A)e1 =
m∑
k=0

bkA
ke1 =

m∑
k=0

bkek+1 ̸= 0

任何次数小于n的多项式都不能零化A. 又由Caylay-Hamilton定理知A的特征多

项式φA零化A, 因此A的极小多项式mA次数恰好为n (mA | φA =⇒ degmA ≤
n). 而f(A)e1 = 0, f(x)是零化e1的次数最低的多项式, 所以f | mA, 但deg f =

degmA = n又迫使mA = f , 命题得证.

Exercise 48

求递推数列an = 3an−2 + 2an−3的通项公式.

Solution 48

首先我们发现递推公式可以写成矩阵乘法的形式:
an

an−1

an−2

 =


3an−2 + 2an−3

an−1

an−2

 =


0 3 2

1 0 0

0 1 0



an−1

an−2

an−3

 = · · · =


0 3 2

1 0 0

0 1 0


n−3

a3

a2

a1


于是问题就转化为: 如何计算一个矩阵的高次幂?此时我们可以借助Jordan标

准形,令A =

(
0 3 2

1 0 0

0 1 0

)
,计算其Jordan标准形得到J =

(
2

−1 1

−1

)
,且P =

(
4 1 1

2 −1 0

1 1 1

)
满
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足J = P−1AP . 这样Ak = (PJP−1)k = PJkP−1, 问题化归到计算Jordan块

的k次幂上. 由练习40知道0−Jordan块是幂零的, 因此我们可以采用二项式展开

计算Jordan块的幂次:(
−1 1

−1

)k

=

((
−1

−1

)
+

(
0 1

0

))k

=

(
−1

−1

)−k

+ k

(
−1

−1

)k−1(
0 1

0

)

=

(
(−1)k k(−1)k−1

(−1)k

)
所以

An−3 = P


2n−3

(−1)n−3 (−1)n−2(n− 3)

(−1)n−3

P−1

= 1
9

(
2n−1 + (−1)n−3(3n − 4) 2n + (−1)n−3(−3n + 1) 2n−1 + (−1)n−3(−6n + 14)

∗ ∗ ∗
∗ ∗ ∗

)
这就是: an = 1

9
((2n−1+(−1)n−3(3n− 4))a3+(2n+(−1)n−3(−3n+1))a2+(2n−1+

(−1)n−3(−6n+ 14))a1).

Exercise 49

设A ∈ Cn×n满足最小多项式mA(λ)等于特征多项式φA(λ). 求证与A交换的

每个方阵B都可以写成A的一个多项式: f(A) = B.

Solution 49

由于最小多项式mA等于最大的不变因子, 所有的不变因子乘积为特征多项

式φA. 因此A的特征多项式等于最小多项式说明A只有一个不变因子mA, 它的有

理标准型只有一块. 设mA(λ) = xn + an−1x
n−1 + · · ·+ a0, 则A相似于:

S =


−a0

1 −a1
. . .

...

1 an−1

 = P−1AP
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令v = Pe1, 其中e1 = (1, 0, . . . , 0)T , 则v, Av, A2v, . . ., An−1v构成C一组基 (想一

想, 为什么?)

考虑v在B下的像在这组基下的坐标: Bv =
∑n−1

k=0 ckA
kv, 则令多项式f(λ) =∑n−1

k=0 ckλ
k. 那么Bv = f(A)v. 于是对于任意w ∈ Cn: w =

∑n−1
k=0 dkA

kv, 记g(λ) =∑n−1
k=0 dkλk, 则w = g(A)v. 于是

Bw = Bg(A)v = g(A)Bv = g(A)f(A)v = f(A)g(A)v = f(A)w

对任意w成立, 这迫使B = f(A).

注记: 若mA ̸= φA, 则还有其它不为A的多项式的矩阵与A交换, 见定理5.

Exercise 50 (矩阵指数与矩阵对数)

如何对复数域上方阵A定义eA和lnA?

Solution 50

令

eA = I + A+
1

2!
A2 +

1

3!
A3 + · · · =

∞∑
k=0

1

k!
Ak

可以证明上式对任意复系数方阵都收敛, exp :
Cn×n → Cn×n

A 7→ eA
良定义.

现在的问题是如何具体的计算出eA?

首先注意到一个事实: P−1eAP = eP
−1AP . 这是因为

P−1eAP = P−1

(
∞∑
k=0

1

k!
Ak

)
P =

∞∑
k=0

1

k!
(P−1AP )k = eP

−1AP .

于是Jordan标准形再一次发挥作用: 一切计算都可以化归到Jordan标准形的

矩阵指数计算上, 由从矩阵指数的定义式中可以看出, 对分块对角阵计算矩阵指

数只需要分别对每块计算矩阵指数即可, 因此问题再一次简化到对Jordan块λI +

N的矩阵指数计算上:
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设λI +N为m×m矩阵:

eλI+N =
∑∞

k=0
1
k!
(λI +N)k

=
∑∞

k=0
1
k!

∑k
j=0

(
k
j

)
λk−jN j

=
∑∞

k=0
1
k!

∑min{k,m−1}
j=0

(
k
j

)
λk−jN j

=
∑m−1

j=0 N
j
∑+∞

k=j
1
k!

(
k
j

)
λk−j

=
∑m−1

j=0
1
j!
N j
∑+∞

k=j
1

(k−j)!
λk−j

=
∑m−1

j=0
eλ

j!
N j

矩阵指数的一个应用是给出常系数线性常微分方程组的解: y′(x) = ay(x)的

解为y(x) = eaxy(0). 相应地, 向量值函数Y (x) : R → Rn若满足Y ′(x) = AY (x),

其中A为一n× n矩阵, 则Y (x) = eAxY (0)

接下来再看矩阵对数: 给定A ∈ Cn×n, 若存在L ∈ Cn×n使得eL = A, 则

称L为A的矩阵对数.

矩阵对数未必存在, 如O显然就没有矩阵对数. 那么什么样的矩阵有对数呢?

仍然由P−1eAP = eP
−1AP知: 只要A的Jordan标准形J有矩阵对数eL = J , 那

么A也有矩阵对数A = P−1JP = P−1eLP = eP
−1LP .

再一次问题转化为了给Jordan块求矩阵对数,由ln(1+x) =
∑+∞

k=1
(−1)k+1

k
xk类

比: 若λ ̸= 0, 则

ln(λI +N) = ln(λ(I + λ−1N))

= (lnλ)I + ln(I + λ−1N)

= (lnλ)I +
∑+∞

k=1
(−1)k+1

k
(λ−1N)k

= (lnλ)I +
∑m−1

k=1
(−1)k+1Nk

kλk

直接验证知L = (lnλ)I +
∑m−1

k=1
(−1)k+1Nk

kλk 满足eL = λI +N .

若λ = 0, 则N = 0I + N不存在矩阵对数. 原因: 矩阵指数必为可逆阵:

eA · e−A = eA−A = eO = I.

于是我们得到Jordan块λI +N有矩阵指数当且仅当λ ̸= 0.

进一步地: 方阵A有矩阵对数当且仅当A可逆.

练习: 尝试写出矩阵三角函数的表达式: sinA, cosA.

更多的练习: 若矩阵A可逆, 尝试写出矩阵平方根的表达式
√
A.

xiaxueqaq 2022-2024



第三章 相似标准型理论 47

Exercise 51 (Jordan-Chevalley分解)

设A ∈ Cn×n.

(1) 证明A可以写成D +N的形式, 其中D可对角化, N幂零;

(2) 若A可逆, 则A可以写成BC的形式, 其中B可对角化, C的特征值全为1.

Solution 51

(1) 由A的Jordan标准形可以写成主对角线和次对角线之和立得: J = P−1AP =

D0 +N0, 于是A = PD0P
−1 + PN0P

−1满足条件.

(2) 由练习50: 存在复系数方阵L使得A = eL, 再由(1)知 L = D + N , 又可以

验证DN = ND, 于是A = eD+N = eD · eN . 注意到P−1eDP = eP
−1DP , 所

以B := eD可对角化. 而N是幂零阵, 由矩阵指数算法可知C := eN特征值全

为1. 所以A = BC = eDeN为所求分解.

注记: 事实上我们还有DN = ND, BC = CB, 并且可以证明这样的分解是

唯一的.

若A = D + N , D可对角化, N幂零, DN = ND. 我们来说明A完全确

定D和N . 设D的相异特征值分别为λ1, . . . , λs, 那么V = Cn分解为D的特征子空

间直和
⊕s

i=1Wi, 其中Wi = ker(D− λiI). 对任意x ∈ Wi有(D− λiI)Nx = N(D−
λiI)x = 0, 所以Wi也是N的不变子空间. 考虑分别将A − λiI和A − D = N限制

到Wi上, 因为在Wi上D的作用等同于λi, 所以(A− λiI)|Wi
= N |Wi

, (A− λiI)|Wi
幂

零. 所以A关于λi的广义特征子空间Vλi
包含Wi. 所以有⊕iWi ⊂ ⊕iVλi

. 比较两边

维数, 左边等于n, 右边小于等于n, 所以必须有Wi = Vλi
. 这样就证明了D的特征

子空间一定是A的广义特征子空间, 被A唯一确定. 并且D在A关于λi的广义特征

子空间上的作用等同于λiI, 这样进一步唯一确定了D, 于是N = A −D也被唯一

确定.

类似的讨论可以说明BC = CB.

更多的注记: 事实上基域是C的假设不是必须的, 甚至基域可以不是代数

闭域. 事实上只要K满足K/K是可分扩张 (例如K是完美域的情形, 更特殊地,

K特征零或者是有限域), 那么K上的方阵总能分解成两个K系数方阵的和, 其
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中一个是半单的 (semi-simple, 在代数封闭的语境下等同于可对角化), 另一个

是幂零的. 这是因为K/K是正规可分扩张, 即Galois扩张. 在K上进行Jordan-

Chevalley分解后, 发现对于所有K的K-自同构α ∈ Gal(K/K)都有A = α(A) =

α(D +N) = α(D) + α(N), 且α(D)可对角化, α(N)幂零, α(D)α(N) = α(DN) =

α(ND) = α(N)α(D). 但由于上面所说的分解唯一性只能有N = α(N), D =

α(D). 再由Galois群的固定域K
Gal(K/K)

= K知道被所有K-自同构固定的K元素

只能是K中元素, 故实际上D, N都是K-系数方阵.

练习: 证明D和N以及B和C实际上是A的多项式 (提示: 使用中国剩余定理

构造A的多项式使得其作用在各个广义特征子空间上作用等同于对应特征值的标

量变换).

Exercise 52

K为一数域, 映射F : Kn×n → Kn×n(n ≥ 2)定义为F (A) = −AT .

(1) 求F的极小多项式;

(2) 求F的所有特征值以及其对应的特征子空间;

(3) 若trF = −3, 求F的Jordan标准形.

Solution 52

(1) 一眼看出mF (λ) = λ2 − 1! 且F可对角化.

(2) 给我翻译翻译, 什么叫特征向量: −AT = F (A) = λA, 显然λ只能为±1.

(a) 当λ = 1时: A = −AT , A为反对称矩阵, 即全体反对称矩阵构成λ = 1的

特征子空间, 维数为n(n−1)
2

;

(b) 当λ = −1时: A = AT , A为对称矩阵, 即全体对称矩阵构成λ = −1的特

征子空间, 维数为n(n+1)
2

.

(3) trF为全体特征值记重数之和:

trF =
n(n− 1)

2
− n(n+ 1)

2
= −3

因此n = 3. F ∼ diag(1, 1, 1,−1,−1,−1,−1,−1,−1)
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Exercise 53

设T , U ∈ Cn×n. T · U可对角化.

(1) 若T或U可逆, 求证(U · T )也可对角化.

(2) 一般地, 即使T和U都不可逆, 证明仍有(UT )2可对角化.

Solution 53

1. 这是显然的, 不妨假设T可逆, 则UT ∼ T (UT )T−1 = TU . 而TU由题设可对

角化, 因此UT也可对角化.

2. 我们分三步证明.

第一步先证明无限域上AB和BA具有相同的特征值: 由det(I−AB) = det(I−
BA)知

∀λ ̸= 0 : det(λI−AB) = λn det(I−λ−1AB) = λn det(I−λ−1BA) = det(λI−AB)

而C为无限域,这样就必须有特征多项式相等:φAB = φBA. 特别地有(TU)2 =

(TUT )U和(UT )2 = U(TUT )具有相同特征值和相同代数重数.

第二步说明AB和BA关于非零特征值的几何重数相同. 设λ ̸= 0为AB的

特征值, AB的关于λ的特征子空间Vλ的一组基为x1, . . ., xr, 则Bx1, . . .,

Bxr为BA的一组线性无关的关于λ的特征向量: 若
∑r

k=1 ckBxk = 0, 则左

乘A得: 0 =
∑r

k=1 ckABxk = λ
∑r

k=1 ckxk, 于是
∑r

k=1 ckxk = 0, 这迫使c1 =

· · · = cr = 0, Bx1, . . . , Br的确线性无关. 同时(BA)(Bxk) = B(ABxk) =

B(λxk) = λ(Bxk),这说明Bxk的确是BA关于λ的特征向量.记geo.mult.λ(M)表

示M关于λ的几何重数. 则我们已经知道

geo.mult.λ(AB) ≤ geo.mult.λ(BA).

但是由于A和B的地位完全相同. 对称地我们可以得到反方向不等式, 这就

是geo.mult.λ(AB) = geo.mult.λ(BA). 特别地(TU)2和(UT )2在非零特征值

上具有相同几何重数.
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最后再来说明(TU)2和(UT )2在λ = 0时仍有几何重数相同. 由秩不等式:

rank(TU) ≥ rank(UTUT ) ≥ rank(TUTUTU)

由TU可对角化知, rank(TU) = rank(TU)2 = rank(TU)3. 于是rank(UT )2 =

rank(TU)2, 由维数公式知dimker(UT )2 = dimker(TU)2. 这就是两者的几

何重数相等.

由前三步以及(TU)可对角化知:

geo.mult.λ((UT )
2) alg.mult.λ((UT )

2)

geo.mult.λ((TU)
2) alg.mult.λ((TU)

2)

(2)(3)

可对角化

(1)

其中alg.mult.λ(M)表示M关于λ的代数重数. 由上述等式我们最终知道(UT )2的

几何重数和代数重数相同, 也就是(UT )2可对角化.

Exercise 54

若A ∈ Cn×n有A2可对角化, 证明A3也可对角化.

Solution 54

由A2可对角化知A2的最小多项式mA2(λ)无重根. 不妨设

mA2(λ) = (λ− λ1) · · · · · (λ− λs).

其中λ1, . . . λs两两不同. 则f(λ) = mA2(λ2) = (λ2 − λ1) · · · · · (λ2 − λs) = (λ −
√
λ1)(λ+

√
λ1) · · · · · (λ−

√
λs)(λ+

√
λs)零化A. mA(λ)|f(λ)至多含有一个二次因

子λ2, 其余因子都是一次因子. 因此A的Jordan块中除了可能的

(
0 1

0

)
之外都是

一阶的, 于是A3的Jordan块都是一阶的, A3可对角化.

Exercise 55

设A,B ∈ Cn×n, A的特征多项式为φA, 求证:

φA(B)可逆⇔ A和B没有公共特征值.
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Solution 55

⇐:由A, B没有公共特征值以及代数基本定理可知, gcd(φA, φB) = 1 (ϕB为B的

特征多项式). 于是存在u, v ∈ C[x]使得uφA+ vφB = 1, 因此由Cayley-Hamilton定

理: u(B)φA(B) = u(B)φA(B) + v(B)φB(B) = I. 于是φA(B)可逆.

⇒: φA(B)可逆, 则0 /∈ Spec(φA(B)). 但是由谱映射定理知: Spec(φA(B)) =

φA(Spec(B)).

B φA(B)

Spec(B) φA(Spec(B)) = Spec(φA(B))

φA

Spec Spec

φA

因此对于任意µ ∈ Spec(B): 0 ̸= φA(µ) ∈ φA(Spec(B)).

于是gcd(φA, φB) = 1, Spec(A) ∩ Spec(B) = ∅.

Exercise 56

对给定域F上n阶方阵A ∈ F n×n, 定义L :
F n×n → F n×n

X 7→ AX −XA
. 若A可对

角化, 求证L可对角化.

Solution 56

将A对角化: A = PDP−1,其中D = diag(d1, . . . , dn)为一对角阵. 由{Eij}ni,j=1

为 F n×n的一组基知{PEijP
−1}ni,j=1也是F

n×n的一组基 (X 7→ PXP−1为可逆线性

变换).

注意到:

L(PEijP
−1) = (PDP−1) · (PEijP

−1)− (PEijP
−1) · (PDP−1)

= PDEijP
−1 − PEijDP

−1

= diPEijP
−1 − djPEijP

−1

= (di − dj)PEijP
−1.

于是所有{PEijP
−1}ni,j=1都是L的特征向量, 构成F n×n的一组基. 因此L可对

角化.
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练习: 若A是实数域上的一正定对称阵, 求证方程AX +XA = B对任意实系

数方阵B有唯一解.

Exercise 57

设A是一个n级复矩阵. S : X 7→ AX − XA是Cn×n上的线性变换. 证明:

rankS ≤ n2 − n.

Solution 57

注意到S(X) = 0 ⇔ AX = XA, 于是只要说明dimC(A) ≥ n, 其中C(A)为全

体与A交换的复方阵即可.

设A的Jordan标准形为J = diag(Jm1(λ1), . . . , Jms(λs))且P
−1AP = J . 其

中Jmi
(λi)表示特征值为λi, 大小为mi的Jordan块. 显然我们有

∑s
i=1mi = n

令Xi,j = P diag(0, 0, . . . , 0, [Jmi
(λi)]

j, 0, . . . , 0)P−1, 特别地j = 0时Xi,0 =

P diag(0, 0, . . . , 0, Imi
, 0, . . . , 0)P−1. 则

S(Xi,j) = AXi,j −Xi,jA

= PJXi,jP
−1 − PXi,jJP

−1

= P




Jm1
(λ1)

. .
.

Jmi
(λi)

. .
.

Jms (λs)




0

. .
.

[Jmi
(λi)]

j

. .
.

0



−


0

. .
.

[Jmi
(λi)]

j

. .
.

0




Jm1
(λ1)

. .
.

Jmi
(λi)

. .
.

Jms (λs)


P−1

= 0

因此Xi,j ∈ C(A). 又显然可以注意到Xi,j (i = 1, . . . , s, j = 0, . . . ,mi − 1)是线性

无关的. 因此dimC(A) ≥ n, rankS ≤ n2 − n.

另解: 事实上我们有著名的Cecioni-Frobenius定理:

Theorem 5 (Cecioni-Frobenius).

dimC(A) ≥ n, 且等号取到当且仅当A的最小多项式mA(λ)等于特征多项

式φA(λ). 事实上我们可以计算dimC(A): 令A的不变因子为d1, . . ., ds (di|di+1).
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则

dimC(A) =
s∑

i=1

(2s− 2i+ 1) deg di

证明. 由不变因子分解 (实际上是PID上有限生成模结构定理), Fn作为F[λ]−模的
结构为

Fn ∼=
s⊕

i=1

F[λ]/(di)

于是与A交换的矩阵B是F[λ]−模同态: B ∈ EndF[λ](Fn) = HomF[λ](Fn,Fn) (对比:

一般的矩阵B ∈ EndF(Fn) = HomF(Fn,Fn)). 因此

C(A) = EndF[λ](Fn) ∼= EndF[λ](
s⊕

i=1

F[λ]/(di)) ∼=
⊕

1≤i,j≤s

HomF[λ](F[λ]/(di),F[λ]/(dj)).

于是

dimC(A) = dim
(⊕

1≤i,j≤s HomF[λ](F[λ]/(di),F[λ]/(dj))
)

=
∑

1≤i,j≤s dimF(HomF[λ](F[λ]/(di),F[λ]/(dj)))
=

∑
1≤i,j≤s deg gcd(di, dj)

=
∑

1≤i,j≤s min{deg(di), deg(dj)}
=

∑s
i=1 deg di + 2

∑
1≤i<j≤s deg di

=
∑s

i=1 deg di +
∑s

i=1 2(s− i) deg di

≥
∑s

i=1 deg di = n.

且等号当且仅当s = 1时取得.

另证. 考虑不变因子分解对应的循环子空间分解:

V ∼=
⊕

Vi,

其中Vi ∼= F[x]/⟨di⟩, d1, . . . , ds为不变因子(di|di+1). 令vi ∈ Vi为生成循环子空间的

循环向量, 则每个v ∈ V都可以唯一地写成
∑s

i=1 fi(A)vi的形式, 其中fi ∈ F[x]满
足deg fi < deg di.

由AB = BA知Bv =
∑s

i=1Bfi(A)vi =
∑s

i=1 fi(A)Bvi. 因此B由Bv1, Bv2, . . . , Bvs完

全确定.

下面再决定Bvi的可能取值,将Bvi分解到各循环子空间Vi上有Bvi = g1(A)v1+

· · ·+gs(A)vs (deg gj < deg dj). 但由于di(A)vi = 0,这迫使di(A)Bvi = 0,即di(A)gj(A)vj =

0对所有j = 1, . . . , s成立.
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我们知道vj的最小多项式为dj, 所以dj|digj. 当j ≤ i时这是自然满足的 (因

为dj|di). 但当j > i时这就要求
dj
di
|gj. 即存在uj ∈ F[x]使得gj = uj

dj
di
, 且deg uj <

deg di. 所以Bvi必须具有

i∑
j=1

uj(A)vj +
s∑

j=i+1

uj(A)

(
dj
di

)
(A)vj

的形式, 其中deg uj <

{
deg dj 1 ≤ j ≤ i

deg di j > i

所以Bvi就由u1, u2, . . . , us唯一确定, 其中deg uj < min{deg di, deg dj}. 我们
完全决定了与A交换的矩阵B具有的形式. 特别地有

dimC(A) =
s∑

i=1

s∑
j=1

min{deg di, deg dj} = n+ 2
s−1∑
i=1

deg di(s− i).

练习: 将上面的定理推广到求方程AX = XB的解空间维数上. 特别地证明

以下推论:

Theorem 6 (Sylvester Equation).

复数域上矩阵方程AX = XB有非平凡解当且仅当A与B有公共特征值. (也

见练习55)

Exercise 58

设V是n维F−线性空间. T ∈ Hom(V, V )循环幂零. 求Hom(V, V )的子空

间M = {U ∈ Hom(V, V )|T 2U = UT 2}的维数.

Solution 58

由T幂零知所有特征值为0, 由T循环知每个特征值只有一个Jordan块. 因

此T相似于N =


0 1

. . . . . .
. . . 1

0

. 由练习41知T 2的不变因子为
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1. 2 | n时: xn/2, xn/2;

2. 2 ∤ n时: x(n−1)/2, x(n+1)/2.

再由定理5知:

dimM =

{
(4− 2 + 1)n

2
+ (4− 4 + 1)n

2
= 2n (2 | n)

(4− 2 + 1)n−1
2

+ (4− 4 + 1)n+1
2

= 2n− 1 (2 ∤ n)

Exercise 59

设A为C上n维线性空间V上的线性变换, 且A有n个不同的特征值λ1, . . . , λn.

求A的所有不变子空间以及不变子空间个数.

Solution 59

从练习46知道, 若能求得V的一个循环向量e ∈ V (即:F [A] · e = V ), 则A的不

变子空间就由f(A)e生成的循环子空间给出, 其中f为m(λ) =
∏n

i=1(λ− λi)的一个

因子.

A有n个不同特征值λ1, . . . , λn, 每个特征值就有一个特征向量ei. 断言:e =∑n
i=1 ei为一个循环向量. 这是因为

Ae =
∑n

i=1 λiei

A2e =
∑n

i=1 λ
2
i ei

· · ·
An−1e =

∑n
i=1 λ

n−1
i ei,

即(e, Ae, . . . , An−1e) = (e1, . . . , en)V (λ1, . . . , λn). 由Vandermonde矩阵可逆且(e1, . . . , en)构

成V一组基知(e, Ae, . . . , An−1e)也是V的一组基,此即e生成的循环子空间是V , e为

循环向量.

设Λ ⊆ {1, . . . , n}, 则
∏

i∈Λ(A − λi)e生成的循环子空间是A的一个不变子空

间. 反之, A的不变子空间都是循环子空间 (若u = f(A)e, v = g(A)e, 则F [A] · u+
F [A] · v = F [A] · (gcd(f, g)e)), 且其循环向量可以选为

∏
i∈Λ(A− λi)e的形式.

最后再来说明不相伴的因子不会给出相同的循环子空间. 设d1, d2为m =∏n
i=1(λ − λi)的因子, 且F [A] · (d1(A)e) = F [A] · (d2(A)e). 那么由定义知存在多
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项式u, v使得u(A)d1(A)e = d2(A)e, d1(A) = v(A)d2(A)e. 但是e是循环向量, 这

迫使m|(ud1 − d2), m|(d1 − vd2). 而d1|m, d2|m, 所以d1|(ud1 − d2) =⇒ d1|d2,
d2|(d1 − vd2) =⇒ d2|d1. 因子d1和d2相伴. 证毕.

Exercise 60

若矩阵A ∈ Cn×n可逆, 证明存在B ∈ Cn×n使得B2 = A.

Solution 60

先证明对于任意非零Jordan块Jr(λ)存在平方根. 由Taylor展开或广义二项式

定理知

(λ+ x)
1
2 =

+∞∑
k=0

(
1/2

k

)
λ

1
2
−kxk.

因此猜想

(λI +N)
1
2 =

+∞∑
k=0

(
1/2

k

)
λ

1
2
−kNk =

r−1∑
k=0

(
1/2

k

)
λ

1
2
−kNk.

右边等式是因为N r = 0, 这实际上是一个有限和.

直接验证: (∑r−1
k=0

(
1/2
k

)
λ

1
2
−kNk

)2
=

∑r−1
k=0

∑
i+j=k, i,j≥0

(
1/2
i

)(
1/2
j

)
λ1−i−jN i+j

=
∑r−1

k=0 λ
1−kNk

(∑
i+j=k, i,j≥0

(
1/2
i

)(
1/2
j

)) .

由Chu-Vandermonde组合恒等式
(
s+t
n

)
=
∑n

k=0

(
s
k

)(
t

n−k

)
知

∑
i+j=k, i,j≥0

(
1/2

i

)(
1/2

j

)
=

(
1

k

)
=

{
1 k = 0, 1

0 k ≥ 2

因此求和式实际上只有前两项不为0, 这样就有
(∑r−1

k=0

(
1/2
k

)
λ

1
2
−kNk

)2
= λI + N .

非零Jordan块确实存在平方根.

再来说明一般可逆矩阵也有平方根, 令A为一可逆矩阵, 且P−1AP将其过

渡到Jordan标准形J = diag(Js1(λ1), . . . , Jsl(λl)). 由前面讨论以及A可逆知每
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个Jordan块Jsi(λi)都有平方根Bi. 令B = P diag(B1, . . . , Bl)P
−1, 则

B2 = P diag(B2
1 , . . . , B

2
l )P

−1 = PJP−1 = A,

如所欲证.

注记: 也可直接利用矩阵对数和矩阵指数计算, 见练习50.

Exercise 61

判断以下说法对错:

1. 若线性空间U有两个子空间V,W满足U = V ⊕W , 则V ∩W = ∅.

2. 若V1, . . . , Vs为线性空间V的子空间, 且∀i, j(i ̸= j), Vi ∩ Vj = {0}. 则 V1 +

· · ·+ Vs =
∑s

i=1 Vi是直和
⊕s

i=1 Vi.

3. 若方阵A相似于B, 则对于任意多项式f ∈ K[x]: f(A) = O ⇔ f(B) = O.

4. 若矩阵A,B可交换, 则对于任意多项式f ∈ K[x]: f(A)B = Bf(A).

5. 设V,W,U为同一线性空间的子空间, 且V ⊕W = V ⊕ U , 则W = U .

6. 设A : V → V为一线性变换, 则V = kerA⊕ ImA.

7. 设A, B分别为n×m和m× n阶矩阵, 则AB和BA具有相同的特征值.

8. 设A, B为同阶方阵, 则AB和BA具有相同的特征多项式.

9. 若A为一复对称阵,则A可以相似对角化.

Solution 61

1. 错, V ∩W = {0}.

2. 错, 考虑平面上三条相交于原点的不同直线.

3. 对, P−1AP = B =⇒ f(B) =
∑n

k=0 ckB
k =

∑n
k=0 ck(P

−1AP )k =
∑n

k=0 ckP
−1AkP =

P−1f(A)P .

xiaxueqaq 2022-2024



58 第三章 相似标准型理论

4. 对, 只要注意到A · · ·AAB = A · · ·ABA = A · · ·BAA = · · ·即可.

5. 错, 考虑平面上三条相交于原点的不同直线V, U,W .

6. 错, 如A =

(
0 1

0 0

)
, 显然kerA = ImA =

〈(
1

0

)〉
.

7. 错, 考虑A = (1, 0), B =

(
1

0

)
. 则AB = 1, BA =

(
1 0

0 0

)
.

8. 对, 注意到det(I − AB) = det(I − BA)对任意矩阵A,B成立. 所以对于任

意λ: det(I − λAB) = det(I − λBA). 当λ ̸= 0时可得det(λ−1I − AB) =

det(λ−1I − BA). 所以AB的特征多项式φAB与BA的特征多项式φBA在任意

多点处取值相同, 这蕴含φAB = φBA.

9. 错, 如A =

(
1 i

i −1

)
相似于

(
0 1

0 0

)
.
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Exercise 62 (钝角)

在n维欧氏空间Rn中两两成钝角的向量最多有多少个? 叙述并证明.

Solution 62

n = 2时容易证明最多为3个, n = 3时也容易给出4个两两成钝角的构造 (正

四面体中心分别向四个顶点连线).

(a) n=2 (b) n=3

图 4.1: n = 2, 3时示意图

因此我们猜想: 在n维欧氏空间中至多有n+ 1个向量两两成钝角.

翻译: 两个向量成钝角的意思就是它们的内积小于0. 我们先来证明, 如果α1,

. . ., αm为m个两两成钝角的向量, 则前m − 1个向量线性无关: 用反证法, 假设存

在不全为零的x1, . . ., xm−1使得x1α1 + · · · + xm−1αm−1 = 0. 经过适当调换顺序,

不妨假设x1 ≥ · · · ≥ xr ≥ 0, 0 > xr+1 ≥ · · · ≥ xm−1. 这样就有

β := x1α1 + . . .+ xrαr = −xr+1αr+1 − · · · − xm−1αm−1

再与αm做内积得到:

⟨β, αm⟩ =
r∑

i=1

xi ⟨αi, αm⟩ =
r∑

j=r+1

−xj ⟨αj, αm⟩ < 0
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严格的不等号是因为x1, . . ., xm−1不全为零, 所以β不为零向量.

但是我们又有:

0 < ⟨β, β⟩ =

〈
r∑

i=1

xiαi,

m−1∑
j=r+1

−xjαj

〉
=

r∑
i=1

m−1∑
j=r+1

−xixj ⟨αi, αj⟩ ≤ 0.

这显然矛盾. 于是α1, . . ., αm−1线性无关. 因此m − 1 ≤ n. 这样我们就说明了至

多只有n+ 1个两两成钝角的向量.

而确实存在n+ 1个两两成钝角的向量:

x1 = (−1, 0, 0, . . . , 0)T

x2 = (1,−2, 0, . . . , 0)T

...

xk = (1, 2, . . . , 2k−2,−2k−1, 0, . . . , 0)T

...

xn = (1, 2, . . . , 2n−2,−2n−1)T

xn+1 = (1, 2, . . . , 2n−2, 2n−1)T

这样我们就完成了证明.

注记, 如果将钝角改成大于特定角度则问题将变得十分复杂, 关于这方面, 参

见Fejes Tóth’s Problem (目前未解决).

Exercise 63

令J =

(
O In

−In O

)
∈ R2n×2n为一2n阶方阵. 若矩阵A ∈ R2n×2n满足ATJA =

J则称A为一个辛矩阵. 求证: detA = 1.

Solution 63

首先由题设ATJA = J知(detA)2 det J = det J , 又由直接计算有det J = 1,

故(detA)2 = 1, detA = ±1. 下面来确定具体符号.
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第四章 内积空间 61

令A =

(
A11 A12

A21 A22

)
为分块矩阵, 其中A11, A12, A21, A22 ∈ Rn×n. 考虑

AJ + JA

=

(
A11 A12

A21 A22

)(
O In

−In O

)
+

(
O In

−In O

)(
A11 A12

A21 A22

)

=

(
A21 − A12 A11 + A22

−(A11 + A22) A21 − A12

)
.

由练习11知det

(
A B

−B A

)
= | det(A + iB)|2 ≥ 0对任意同阶实方阵A, B成立. 所

以det(AJ + JA) ≥ 0.

注意到

detA · det(AJ + JA)

= det(AT (AJ + JA)) = det(ATAJ + ATJA)

= det(ATAJ + J) = det(ATA+ I) · det J
= det(ATA+ I) > 0,

最后的大于号是因为ATA + I是正定实对称矩阵. 所以detAT = detA > 0. 这样

就得到detA = 1.

Exercise 64

证明R3中方程

2x2 + 4y2 + 8z2 − 2xy + 4xz + 6yz − 20 = 0

的图像是椭球面, 并求出这个椭球面所围成的立体体积. (已知椭球面x2

a2
+ y2

b2
+

z2

c2
= 1所围成的立体体积为4

3
πabc.)

Solution 64

将二次项整理成二次型对应的矩阵:

S =


2 −1 2

−1 4 3

2 3 8

 .
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其三个顺序主子式S1 = 2, S2 = 7, S3 = detS = 10. 因此S正定, 存在正交方

阵P使得P−1SP = D = diag(λ1, λ2, λ3), 并且λ1, λ2, λ3 > 0, λ1λ2λ3 = detS = 10.

通过P建立新直角坐标系, 则在新坐标系下方程化为λ1(x
′)2 + λ2(y

′)2 + λ3(z
′)2 =

20. 于是方程的图像是椭球面.

进一步整理方程得到 (x′)2
20
λ1

+ (y′)2
20
λ2

+ (z′)2
20
λ3

= 1. 所以椭球体积为V = 4
3
π
√

20
λ1

· 20
λ2

· 20
λ3

=

4
3
π
√
800 = 80

3
π
√
2.

Exercise 65 (Min-Max原理变式)

设A : X 7→ AX是带标准内积的欧氏空间R4 → R3的线性映射. 其中A =(
1 0 0 −1

0 1 0 −2

0 0 1 2

)
. 求在条件∥x∥ = 1下, ∥Ax∥能取到的最大值和最小值, 并确定在何

处取到.

Solution 65

由ATA为半正定实对称矩阵知ATA可以正交相似到对角阵ATA = QTDQ,

D为一对角阵, 主对角线上元素均≥ 0. 因此

max
∥x∥=1

∥AX∥2 = max
∥x∥=1

⟨Ax, Ax⟩ = max
∥x∥=1

xTATAx = max
∥x∥=1

xTQTDQx

= max
∥x∥=1

(Qx)TD(Qx) = max
∥x∥=1

xTDx = λmax(A
TA)

其中倒数第二个等号是因为Q是正交阵,它在单位球面∥x∥ = 1上是双射, λmax(A
TA)表

示ATA的最大特征值.

同理我们有min
∥x∥=1

∥Ax∥2 = λmin(A
TA). 取到最大值和最小值的位置分别

为λmax(A
TA)和λmin(A

TA)的单位特征向量.

本题中λmax(A
TA) = 10, λmin(A

TA) = 0. 对应最大值点和最小值点为± 1√
90

(
−1

−2

2

9

)

和± 1√
10

(
1

2

−2

1

)
.

注记: 最大值点和最小值点可能有多个, 不要遗漏!
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Exercise 66 (同时相合对角化)

设F为任意特征不为2的域 (char F ̸= 2). A,B ∈ Fn×n为对称阵, A可逆. 证

明:

存在可逆阵P将A, B同时相合到对角阵⇔ A−1B可对角化.

Solution 66

⇒: 设P TAP = D1, P
TBP = D2, D1, D2为对角阵.

则P−1A−1P T−1
= D−1

1 =⇒ A−1 = PD−1
1 P T , 同时B = P T−1

D2P
−1. 因

此A−1B = PD−1
1 D2P

−1可对角化.

⇐: 反之A−1B可对角化: P−1A−1BP = D, D为对角阵. 令S1 = P TAP ,

S2 = P TBP , 只要证明S1, S2可以同时被一可逆阵相合到对角阵即可. 直接计算

有S−1
1 S2 = P−1A−1BP = D = diag(λ1, . . . , λn). 于是S2 = S1D, 记S1的(i, j)−元

为sij, 由S1和S2对称知sij = sji, λjsij = λisji (∀i, j). 这样要么有λi = λj, 要

么有sij = sji = 0. 于是不妨令D = diag(λ1I, . . . , λsI), 其中λ1, . . ., λs两两不

同. 则S1和S2分块对角: S1 = diag(M1, . . . ,Ms), S2 = diag(N1, . . . , Ns), 且Ni =

λiMi (i = 1, . . . , s). 设可逆阵Qi将Mi相合到对角阵Di (由于char F ̸= 2, 这总是能

做到). 令Q = diag(Q1, . . . , Qs): 则我们有

QTS1Q = diag(QT
1 , . . . , Q

T
s )·diag(M1, . . . ,Ms)·diag(Q1, . . . , Qs) = diag(D1, . . . , Ds),

QTS2Q = diag(QT
1 , . . . , Q

T
s )·diag(N1, . . . , Ns)·diag(Q1, . . . , Qs) = diag(λ1D1, . . . , λsDs).

于是可逆阵Q将A, B同时相合到对角阵.

Exercise 67

设U = span(α1, α2)为R4的子空间(带标准内积), 其中α1 = (1, 0, 1, 0)T , α2 =

(1, 1, 0, 0)T .

(1) 求U⊥的维数和它的一组正交基;

(2) 求α = (1, 1, 1, 1)T在U上的正交投影;

(3) 求点(1, 1, 1, 1)到U的最短距离.
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Solution 67

(1) 易知dimU⊥ = 2. 由 (
1 0 1 0

1 1 0 0

)(
x1

x2

x3

x4

)
= 0

得U⊥ = {a1(−1, 1, 1, 0)T + a2(0, 0, 0, 1)
T |a1, a2 ∈ R}, 这也是一组正交基.

(2) 设α = u+u⊥ = u+a1(−1, 1, 1, 0)T +a2(0, 0, 0, 1)
T (u ∈ U, u⊥ ∈ U⊥, a1, a2 ∈

R).

则

〈
α,

(
−1

1

1

0

)〉
= 3a1 = 1,

〈
α,

(
0

0

0

1

)〉
= a2 = 1. 于是a1 =

1
3
, a2 = 1.

从而u = α− 1
3

(
−1

1

1

0

)
−

(
0

0

0

1

)
=

(
4/3

2/3

2/3

0

)
.

(3) 即求min
v∈U

⟨α− v, α− v⟩. 但这是直接的:

min
v∈U

⟨α− v, α− v⟩

= min
v∈U

〈
u− v + 1

3

(
−1

1

1

0

)
+

(
0

0

0

1

)
, u− v + 1

3

(
−1

1

1

0

)
+

(
0

0

0

1

)〉
= min

v∈U
⟨u− v, u− v⟩+ 1

3
+ 1

= 4
3

所以最短距离为 2√
3
.

Exercise 68

给定矩阵A ∈ Rn×n, 证明:

A为两个Rn×n中正定对称阵乘积 ⇔ A在R上可对角化, 且特征值均为正数.

Solution 68

⇒: 设A = S1S2为两个正定对称阵的乘积, 则存在正交阵Q ∈ O(n)将S1正交

相似到对角阵:S1 = Q−1


λ1

. . .

λn

Q. 令P = Q−1


√
λ1

. . .
√
λn

Q. 那
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么:

P T = QT


√
λ1

. . .
√
λn

Q−1T = Q−1


√
λ1

. . .
√
λn

Q = P

于是P = P T , S1 = P 2 = P TP .

这样

A = S1S2 = P 2S2 ∼ P−1P 2S2P = PS2P = P TS2P

而S2为正定对称阵, P TS2P为正定二次型, 其特征值全为正数. 所以

A ∼ P TS2P ∼


µ1

. . .

µn

 > 0

⇐: 将A正交相似到对角阵, 并从中写出乘积分解:

A = Q−1


λ1

. . .

λn

Q

= Q−1(QT−1
QT )


λ1

. . .

λn

Q

=
(
Q−1Q−1T

)QT


λ1

. . .

λn

Q


注记: 前半部分证明中出现的P称为正定对称阵S1的平方根, 它也是正定对

称的.

Exercise 69 (Witt扩张定理)

令V为带标准内积的有限维实线性空间. 给定V中两组向量S = {α1, . . . , αm}
和 T = {β1, . . . , βm}, 且满足⟨αi, αj⟩ = ⟨βi, βj⟩ (∀1 ≤ i, j ≤ m), 则存在V上正交

变换将αi映到βi.
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Solution 69

设dimV = n. 并令A = (α1, . . . , αm), B = (β1, βm). 则由题设条件知A
TA =

BTB. 又由它们是半正定实对称阵知存在正交方阵P使得

P TATAP = P TBTBP = diag(λ1, . . . , λr, 0, . . . , 0).

令D = diag(1/
√
λ1, . . . , 1/

√
λr, 1, . . . , 1), 则

(APD)T (APD) = (BPD)T (BPD) = diag(Ir, On−r).

记A1 = APD,B1 = BPD. 上式说明A1 (B1同理)的前r列为单位长度的互相正交

的向量,后n−r列为0. 分别将A1和B1的列向量组扩充为V的一组标准正交基并排

成方阵R和S. 则R和S为正交阵, Q = SR−1仍为正交阵. Q将R的前r列变到S的

前r列,即变A1的前r列到B1的前r列. 但A1.B1的后n− r列均为0. 故QA1 = B1. 展

开得QAPD = BPD, 因为P和D均可逆, 所以最终有QA = B.

Exercise 70

设A是正规方阵(AA∗ = A∗A). λ和µ是A的两个不同特征值. α, β分别是从属

于λ和µ的特征向量. 求证⟨α, β⟩ = 0.

Solution 70

先说明一个引理: kerA = kerA∗. 这是因为:

x ∈ kerA⇔ Ax = 0 ⇔ ⟨Ax, Ax⟩ = 0 ⇔ x∗A∗Ax = 0 ⇔ x∗AA∗x = 0

⇔ ⟨A∗x, A∗x⟩ = 0 ⇔ A∗x = 0 ⇔ x ∈ kerA∗

进一步得到推论, 正规方阵A关于λ的特征向量α也是A∗关于λ̄的特征向量:

Aα = λα ⇔ α ∈ ker(A− λI) ⇔ α ∈ ker(A∗ − λ̄I) ⇔ A∗α = λ̄α.

这是因为A− λI也是正规方阵.

于是:
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⟨α, Aβ⟩ ⟨α, µβ⟩ µ ⟨α, β⟩

⟨A∗α, β⟩
〈
λ̄α, β

〉
λ ⟨α, β⟩

因此(λ− µ) ⟨α, β⟩ = 0 =⇒ ⟨α, β⟩ = 0.

Exercise 71

设A是n阶实正规方阵. (a + bi)是A的一个特征值 (a, b ∈ R, b ̸= 0). α +

βi(α, β ∈ Rn)为对应的特征向量. 求证α, β正交, 长度相等.

Solution 71

显然(a− bi)也是A的一个特征值 (实系数多项式的非实根成对出现). 且(α−
βi)为对应的特征向量. 由b ̸= 0以及练习70知⟨α + βi, α− βi⟩ = 0.

由双线性性展开得: (αTα−βTβ)+(−2αTβ)i = 0. 于是αTα = βTβ, αTβ = 0.

此即α, β正交, 长度相等.

Exercise 72

证明: 复方阵A是正规方阵当且仅当存在复系数多项式f(λ)使得A∗ = f(A).

Solution 72

⇐: 这是容易的, A∗A = f(A)A = Af(A) = AA∗, 因此A是正规方阵.

⇒: 由A是正规方阵知, A可以酉相似对角化: 存在酉方阵U使得 U−1AU =

diag(λ1, . . . , λn). 于是(U−1AU)∗ = U−1A∗U = diag(λ1, . . . , λn). 问题转化为了

构造多项式f使得f(diag(λ1, . . . , λn)) = diag(λ1, . . . , λn). 事实上这只需要f(λ1) =

λ1, . . ., f(λn) = λn. 由Lagrange插值多项式(见练习8)知这样的f存在. 于是U−1f(A)U =

f(U−1AU) = U−1A∗U , 即f(A) = A∗.

Exercise 73

若A是实正规方阵, 且对实方阵B有AB = BA. 证明也有ATB = BAT
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Solution 73

由练习72知存在多项式f(λ)使得AT = f(A), f(λ) =
∑n

k=0 ckλ
k. 于是

ATB = f(A)B =
n∑

k=0

ckA
kB =

n∑
k=0

ckBA
k = Bf(A) = BAT .

Exercise 74 (Schur上三角化)

证明任何复方阵都可以经酉矩阵相似到一个上三角阵.

Solution 74

对方阵阶数n做归纳. n = 1时结论显然成立. 若任何n − 1阶复方阵都可以经

酉方阵相似到上三角阵. 任取λ为A∗的特征值, v为一个λ对应的特征向量, 通过归

一化不妨假设∥v∥ = 1. 取v对应的正交补

W = {w ∈ Cn| ⟨w, v⟩ = 0}.

则W是A的不变子空间: 任取w ∈ W , ⟨Aw, v⟩ = ⟨w, A∗v⟩ = ⟨w, λv⟩ = λ ⟨w, v⟩ =
0. 且dimW = n− 1. 由归纳假设知道A|W可以由酉矩阵相似到上三角阵, 翻译成

线性映射的语言就是存在W的一组标准正交基{w1, . . . , wn−1}使得A|W在这组基
下满足A|Wwi ∈ span(wi, . . . , wn−1).

这样就有{v, w1, . . . , wn−1}构成Cn的一组标准正交基. 且显然A在这组基下

满足Awi ∈ span(wi, . . . , wn−1), Av ∈ span(v, w1, . . . , wn−1). 于是这组标准正交基

对应的酉矩阵将A相似到上三角阵.

注记: 当A正规时v也是A的特征值 (见练习70中证明), 于是这事实上给出了

正规算子可以酉对角化的另一个证明.

Exercise 75 (Schur不等式)

设A为n阶复方阵, λ1, . . . , λn是A的全体特征值. 证明

trA∗A ≥
n∑

k=1

|λk|2,

其中等号成立当且仅当A为正规方阵.
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Solution 75

利用Schur酉上三角化 (练习74), 将A写成U∗TU的形式, 其中U为一酉矩阵,

T为上三角矩阵. 所以

trA∗A = trU∗T ∗UU∗TU = trU∗(T ∗T )U = tr(UU∗)(T ∗T ) = trT ∗T.

记

T =


t11 t12 · · · t1n

t22
...

. . .
...

tnn

 ,

显然t11, . . . , tnn为A的全体特征值. 直接计算得知

trT ∗T =
n∑

i=1

i∑
j=1

tjitji =
n∑

i=1

i∑
j=1

|tji|2 ≥
n∑

i=1

|tii|2 =
n∑

k=1

|λk|2,

且等号成立当且仅当所有对角线以上元素tij (i < j)为零, 即T为对角阵. 于是等

号成立时确实有A可以酉相似到对角阵, 此即A为正规方阵. 反之A为正规方阵时

当然可以酉相似到对角阵, 必然有trA∗A =
∑n

k=1 |λk|2.

Exercise 76

设复方阵A满足A∗ = −A, 说明I ± A可逆, 而且(I − A)(I + A)−1是酉矩阵.

Solution 76

若向量v ∈ Cn满足(I + A)v = 0, 即v = −Av, 则

0 ≤ ⟨v, v⟩ = ⟨v, −Av⟩ = ⟨v, A∗v⟩ = ⟨Av, v⟩ = ⟨−v, v⟩ = −⟨v, v⟩ ≤ 0,

这迫使⟨v, v⟩ = 0, 由Hermite内积正定性知v = 0. 于是(I + A)可逆.

同理若v = Av, 则

0 ≤ ⟨v, v⟩ = ⟨Av, v⟩ = ⟨v, A∗v⟩ = ⟨v, −Av⟩ = −⟨v, v⟩ ≤ 0,

仍然有v = 0. 于是(I − A)也可逆.

xiaxueqaq 2022-2024



70 第四章 内积空间

这样直接计算((I − A)(I + A)−1)∗((I − A)(I + A)−1)得

((I − A)(I + A)−1)∗((I − A)(I + A)−1)

= (I + A)−1∗(I − A)∗(I − A)(I + A)−1

= (I − A)−1(I + A)(I − A)(I + A)−1

= (I − A)−1(I − A)(I + A)(I + A)−1

= I.

注记: 法国人名“Hermite”的“H”不发音. 关于法语有这样一个笑话:

How do Chinese laugh?

- Hahahaha.

How do the French laugh?

- Aaaaaaa... Because the “H” is silent!

Exercise 77

若规范方阵A, B交换, 则它们可以由同一个酉方阵对角化.

Solution 77

这里与练习38是完全类似的. 注意到练习38中A, B可对角化的条件在本题中

已经被A, B是规范方阵所满足. 而本题所要求的用酉方阵对角化无非就是在挑

选A, B的公共特征向量成为全空间一组基的基础上增加这组基还是一组标准正

交基的要求. 这可以通过Gram-Schmidt正交化得到. 细节留给读者自证.

Exercise 78

设n ≥ 2. Jacobi矩阵是具有以下形式的n× n实矩阵:

A =



a1 b1

c1 a2 b2

c2 a3 b3
. . . . . . . . .

cn−2 an−1 bn−1

cn−1 an


, ∀i, bici > 0.
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(1) 证明Jacobi矩阵总能在R上对角化.

(2) 证明Jacobi矩阵有n个相异实特征值.

Solution 78

(1) 首先我们证明A可以实相似到实对称阵. 注意到b1c1 > 0, 因此通过初等行变

换第二行乘以
√

b1
c1
再通过初等列变换第二列乘以

√
c1
b1
, 得到

A′ =



a1 b1
√

c1
b1

c1

√
b1
c1

a2 b2

√
b1
c1

c2
√

c1
b1

a3 b3

. . . . . . . . .

cn−2 an−1 bn−1

cn−1 an


.

这样就有b1
√

c1
b1

= c1

√
b1
c1
. 而上述行变换为左乘矩阵


1 √

b1
c1

. . .

1

, 列变

换为右乘矩阵


1 √

c1
b1

. . .

1

, 两个矩阵恰巧互为对方的逆. 因此A和A′相

似. 且A′仍满足与A相同的条件: 即上对角线和下对角线对应元素乘积大于

零. 我们可以重复上述操作, 将第三列和第三行分别乘以
√

c2
b2
和
√

b2
c2
, 第四列

和第四行分别乘以
√

c3
b3
和
√

b3
c3
... 以此类推, 我们通过一系列相似变换将A逐

渐使其上对角线和下对角线的对应元素相等. 这样就证明了A的确可以实相

似到实对称阵, 由熟知的实对称阵可以在R上对角化知A也可以在R上对角化.

(2) 若λ ∈ R为A的特征值, 我们来证明λ对应的特征子空间只能是一维的. 考虑方

程(A− λI)x = 0. 令xi为x的第i个坐标分量, 则x完全由x1决定. 论证如下:

由a1x1 + b1x2 = 0知x2 = −a1
b1
x1 (显然由b1c1 > 0知b1 ̸= 0), 于是x2完全由x1确

定.
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再由c1x1 + a2x2 + b2x3 = 0知x3 = − c1
b2
x1 − a2

b2
x2, 于是x3也完全由x1确定.

以此类推, ck−1xk−1 + akxk + bkxk+1 = 0 =⇒ xk+1 = −ak
bk
xk − ck−1

bk
xk−1. 这

样x2, x3, . . . , xn都完全由x1确定. 所以

1 ≤ dimker(A− λI) ≤ 1.

λ对应的特征子空间只能是一维的. 由前一问可对角化已经知道A有n个实特

征值,且所有特征子空间维数之和为n. 这迫使所有特征值各不相同 (否则A只

有少于n个相异特征值且每一个特征值对应特征子空间都是一维的,它们的维

数之和不能等于n.)

另解: 我们介绍实代数几何中的一个基本事实:

Theorem 7 (Baby version of Sturm-Sylvester Theorem).

一个R[x]上的多项式序列{f0, . . . , fm}被称为f0的一个伪伪伪Sturm序序序列列列, 如果它

满足以下条件

ST 1. fm为一个非零常数.

ST 2. 若x0 ∈ R是某个fi (1 ≤ i ≤ m− 1)的根, 则fi−1(x0) · fi+1(x0) < 0.

若实数u, v(u < v)不是任何fi的根, 那么f0在区间[u, v]内(不计重数)的实根个数满

足

#{x ∈ [u, v]|f0(x) = 0} ≥ WS(u)−WS(v).

其中WS(u)表示序列{f0(u), f1(u), . . . , fm(u)}的符号变化次数 (如{+1,−1,−1,+1,+1}的
符号变化次数为2). 我们称WS(u)为伪Sturm序列{f0, . . . , fm}在u处的变变变号号号数数数.

证明. 令α1 < α2 < · · · < αr为所有fi在[u, v]上的根. 则显然WS(x)在任何一个

开区间(αj, αj+1)上不会变化 (这是因为多项式是连续函数, 由介值定理知道每

一个fi在(αj, αj+1)上保持定号, 所以{f0(x), . . . , fm(x)}在该开区间上保持相同的
符号序列, 自然也保持变号数WS(x)不变.) 这样只要考虑WS(x)在跨过某个fi的

根αj时的变化即可. 我们将证明WS(x)在跨过f1, . . . , fm−1的根时不变.

若αj是某个fi (1 ≤ i ≤ m− 1)的根, 则由ST 2知道fi−1(αj)fi+1(αj) < 0. 因此

无论fi(x)的符号在跨过αj时如何变化, WS(x)都不会改变 (要么fi(x)和fi−1(x)异
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号,要么fi(x)和fi+1(x)异号,总之{fi−1(x), fi(x), fi+1(x)}的变号数是1.) 因此WS(x)在

跨过f1, . . . , fm−1的根时不变.

下面再来分析WS(x)跨过f0(x)的根时的变化情况,若αj是f0的根. 那么{f0(x), f1(x)}只
有四种变化可能:

(a) 从同号变成同号, 变号数WS(x)不变.

(b) 从同号变成异号, 变号数WS(x)加一.

(c) 从异号变成同号, 变号数WS(x)减一.

(d) 从异号变成异号, 变号数WS(x)不变.

无论如何变化, WS(x)在跨过f0的根时至多增加或减少1. 总结上述讨论, 我们知

道fi (1 ≤ i ≤ m − 1)的根对WS(x)没有贡献, f0的每个根至多会使WS(x)变化±1.

所以我们有#{x ∈ [u, v]|f0(x) = 0} ≥ WS(u)−WS(v).

回到本题, 令Di(λ)为(λI − A)的第i个顺序主子式, 特别地令D0 = 1. 则由行

列式展开知

D0 = 1;

D1 = λ− a1;

D2 = (λ− a2)D1 − b1c1D0;
...

Dn = (λ− an)Dn−1 − bn−1cn−1Dn−2.

于是{Dn, Dn−1, . . . , D1, D0}构成一个伪Sturm序列: 由行列式展开知Di+1+biciDi−1 =

(λ−ai+1)Di,因此若x0是Di的根,则要么x0也同时是Di+1和Di−1的根,要么Di+1和Di−1在x0处

异号. 但前者不可能,这是因为Di+bi−1ci−1Di−2 = (λ−ai)Di−1迫使x0也是Di−2的

根, 以此类推x0是常数多项式D0的根得到矛盾.

现在利用上述Sturm定理证明Dn确实有n个相异实根: 由Di(λ)的首项为λ
i知WS(−∞) =

n, WS(+∞) = 0. 所以

n ≥ #{λ0 ∈ R|Dn(λ0) = 0} ≥ WS(−∞)−WS(+∞) = n.

于是Dn确实有n个相异实根,这证明了A有n个相异实特征值,这也蕴含了A可

以在R上对角化.

下附完整版本的Sturm-Sylvester定理:
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Theorem 8 (Sturm-Sylvester). 设f, g ∈ R[x]. 又令u, v ∈ R (u < v), 且u, v都不

是f的根. 则定义f, g的Sturm序序序列列列为:

f0 = f, f1 = f ′g,

fi = fi−1qi − fi−2, 其中qi ∈ R[x], deg fi < deg fi−1,

fm = gcd(f0, f1).

即−fi为fi−2除以fi−1的余式 (注意负号). 则(u, v)上使g为正的f实根数减去使g为

负的f实根数恰为Sturm序列两端变号数之差:

#{x0 ∈ (u, v)|f(x0) = 0, g(x0) > 0} −#{x0 ∈ (u, v)|f(x0) = 0, g(x0) < 0}
= WS(u)−WS(v).

特别地, 令g = 1, 则有(u, v)内f(x)的实根个数恰好等于

WS(u)−WS(v).

证明是类似的, 只是需要对WS(x)在跨过f0 = f的实根时做更加细致的分析,

这部分留作练习. 我们特别指出, 通过Sturm-Sylvester定理和二分法, 我们可以求

出一元多项式方程的实解. 更进一步的我们能利用Sturm-Sylvester定理证明实代

数几何中的Tarski-Seidenberg原理, 它断言实代数几何中所有一阶命题都可以通

过算法判定真伪.

Exercise 79

设H1, H2都是n阶正定Hermite方阵, 且H1 −H2正定, 求证: H−1
2 −H−1

1 正定.

Solution 79

设可逆方阵P满足P ∗P = H1, 则

H1 −H2 = P ∗P −H2 = P ∗(I − (P ∗)−1H2P
−1)P > 0.

令酉方阵Q将(P ∗)−1H2P
−1相似到对角阵D = diag(d1, . . . , dn) > 0:

(P ∗)−1H2P
−1 = Q∗DQ,
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则H1 −H2 = P ∗Q∗(I −D)QP > 0. 从而对任意i: di ∈ (0, 1). 这样

H−1
2 −H−1

1 = P−1Q∗D−1Q(P ∗)−1 − P−1(P ∗)−1

= P−1Q∗(D−1 − I)Q(P ∗)−1 > 0.

注记: 证明的实质是同时相合对角化. 结果也可以通过练习66和练习68得到.

练习: 设H1, H2都是n阶正定Hermite方阵, 且H1正定. 求证H1 +H2正定的充

分必要条件是H−1
1 H2的特征值都大于−1.

Exercise 80

设V = R[x]4 = {f ∈ R[x]| deg f < 4}装备有内积⟨f, g⟩ =
∫ 1

0
fgdx. 从B =

{1, x, x2, x3}出发求一组标准正交基.

Solution 80

这无非是Gram-Schmidt正交化的过程. 首先我们从B出发依次将其中向量去

掉非正交的分量, 得到一组正交基:

α1 = 1,β1 = α1 = 1

α2 = x,β2 = α2 −
⟨α2, β1⟩
⟨β1, β1⟩

β1

= x−
∫ 1

0
xdx∫ 1

0
1dx

· 1

= x− 1

2

α3 = x2,β3 = α3 −
⟨α3, β2⟩
⟨β2, β2⟩

β2 −
⟨α3, β1⟩
⟨β1, β1⟩

β1

= x2 −
∫ 1

0
x2(x− 1

2
)dx∫ 1

0
(x− 1

2
)2dx

(x− 1

2
)−

∫ 1

0
x2dx∫ 1

0
1dx

· 1

= x2 − x+
1

6

α4 = x3,β4 = α4 −
⟨α4, β3⟩
⟨β3, β3⟩

β3 −
⟨α4, β2⟩
⟨β2, β2⟩

β2 −
⟨α4, β1⟩
⟨β1, β1⟩

β1

= x3 − 3

2
x2 +

3

5
x− 1

20
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这样{β1, β2, β3, β4}就构成了一组正交基. 再将其模长置为一得到标准正交基:

{
1, 2

√
3(x− 1

2
), 6

√
5(x2 − x+

1

6
), 20

√
7(x3 − 3

2
x2 +

3

5
x− 1

20
)

}
.

xiaxueqaq 2022-2024



第五章 张量积

Exercise 81

设V是有限维向量空间, T ∈ End(V ). 证明:

det(λI − T ) =
n∑

k=0

(−1)k tr(
∧k

T )λn−k.

Solution 81

选定一组基e1, . . . , en, 将T等同于这组基下的矩阵, 只要证明T所有的k阶主

子式之和等于tr
∧k T即可 (因为按定义展开det(λI − T ), 出现在λn−k系数上正

是(−1)k倍的所有k阶主子式之和). 记指标集

Λ = {α = (α1, . . . , αk)|αi ∈ {1, . . . , n}, α1 < · · · < αk},

Pα为向子空间⟨ei⟩i∈α投影的矩阵, 而Tα = T表示T中α对应行列构成的主子式, 则

要证明tr
∧k T =

∑
α∈Λ detTα.

计算迹只需要知道每一个基元素eα1 ∧ · · · ∧ eαk
在线性变换下的像在对应方

向上的分量是什么 (即线性变换对应矩阵的对角线元素). 注意到
∧k(V )中向eα1 ∧

· · · ∧ eαk
方向投影的映射正是

∧k Pα. 于是计算(∧k
Pα

∧k
T
)
eα1∧· · ·∧eαk

=
(∧k

Pα

∧k
T
∧k

Pα

)
eα1∧· · ·∧eαk

=
(∧k

(PαTPα)
)
eα1∧· · ·∧eαk

.

而最右边的式子等于detTαeα1 ∧ · · · ∧ eαk
(将
∧n T = detT · id∧n V应用到子

空间⟨ei⟩i∈α上并将PαTPα视作子空间上的线性变换Tα). 这样就说明了tr
∧k T =∑

α∈Λ detTα, 证毕.

注记: 若使用一些代数几何的方法则本题比较容易证明.
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首先过渡到代数闭域F̄ (显然域扩张不影响行列式和迹). 然后考虑当T可对

角化的情形, 选取一组T的特征向量e1, . . . , en作为V的基, 而λi是对应ei的特征向

量.则
∧k T (eα1 ∧· · ·∧eαk

) = (
∏k

i=1 λαi
)eα1 ∧· · ·∧eαk

. 于是自然基eα1 ∧· · ·∧eαk
全

部都是
∧k T的特征向量, 对应特征值为

∏k
i=1 λαi

. 这样直接对所以特征值求和计

算得到tr
∧k T = σk(λ1, . . . , λn), 其中σk为基本对称多项式. 再由韦达定理 (根与

系数关系) 知道相差一个(−1)k的意义下这就是T特征多项式中n− k项的系数. 于

是对可对角化的T我们有欲证明的等式成立.

将End(V )等同于F̄ n2
, 赋予其Zariski拓扑(即满足所有的闭集为多项式方程组

的零点集的拓扑). 在此拓扑下全体可对角矩阵是稠密的 (全体可对角矩阵至少包

含特征多项式无重根的全体矩阵, 而特征多项式无重根当且仅当特征多项式的判

别式不为零, 于是特征多项式无重根的全体矩阵在Zariski拓扑下构成开集, 因此

稠密.)于是存在一个F̄ n2
的稠密集合满足det(λI−T ) =

∑n
k=0(−1)k tr(

∧k T )λn−k左

右λ对应系数相等的多项式方程组. 这样的多项式方程组必须对于全体F̄ n2
也成

立, 于是欲证等式成立.

Exercise 82

设ω ∈
∧p(V )\{0}, 其中p ≤ n := dimV . 若存在v1, · · · , vp ∈ V使得ω =

v1 ∧ · · · ∧ vp, 则称ω是可分解的.

(i) 定义ann(ω) := {v ∈ V |ω ∧ v = 0}. 说明它是V的子空间, 而且维数≤ p.

(ii) 设x1, . . . , xp ∈ V线性无关, 对ω := x1 ∧ · · · ∧ xp证明ann(ω) = ⟨x1, . . . , xp⟩.

(iii) 选定ω和ann(ω)的基e1, . . . , er, 说明存在η ∈
∧p−r(V )使得

ω = e1 ∧ · · · ∧ er ∧ η.

以此说明r = p当且仅当ω可分解.

Solution 82

(i) 显然ann(ω)满足对加法和数乘封闭, 它是V的子空间. 选取ann(ω)的一组

基e1 . . . , er(r = rank ann(ω))并扩充er+1, . . . , en成为V的一组基. 记指标集

Λ = {α = (α1, . . . , αp)|αi ∈ {1, . . . , n}, α1 < · · · < αp},
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则ω可以表示为
∑

α∈Λ cαeα1 ∧ · · · ∧ eαp .

考虑计算ω∧e1 =
∑

α∈Λ cαeα1∧· · ·∧eαp∧e1,由定义知计算结果为0. 而{eα1∧
· · · ∧ eαp ∧ e1|α ∈ Λ, α1 ̸= 1}在

∧p+1(V )中线性无关. 所以这迫使所有α1 ̸=
1的cα为0.

下面继续计算ω ∧ e2, 由ω的展开式以及前一步知ω ∧ e2 =
∑

α∈Λ, α1=1

cαeα1 ∧

eαp ∧ e2 = 0. 类似地我们知道所有满足α2 ̸= 2的cα都为0.

继续计算ω ∧ e3, ω ∧ e4 . . ., 我们将得到α3 = 3, α4 = 4, . . .. 所以如果r > p,

就必须有ω = ce1 ∧ e2 ∧ . . . ∧ ep. 但ep+1 ∈ ann(ω), 这显然不可能.

(ii) 将x1, . . . , xp扩充成V的一组基x1, . . . , xn. 对V中任意向量v =
∑n

i=1 cixi, 我

们有ω ∧ v =
∑n

i=p+1 ciω ∧ xi. 所以ω ∧ v = 0当且仅当cp+1 = · · · = cn = 0, 如

所欲证.

(iii) 继续第一部分的讨论, 我们已经知道α1 = 1, α2 = 2, . . . , αr = r. 这就是要证

明的存在η ∈
∧p−r(V )使得ω = e1∧· · ·∧er∧η. 若r = p,这显然说明ω可分解.

而反之由第二部分知道对可分解的0 ̸= ω ∈
∧p(V )一定有dim ann(ω) = p,

证毕.

Exercise 83

承上题, 证明所有ω ∈
∧n−1(V )都是可分解的 (n := dimV ).

Solution 83

记基域为F . 注意到
∧n(V ) = {ce1 ∧ · · · ∧ en|c ∈ F} ∼= F , 而我们有线性映射

A :
V →

∧n(V ) ∼= F

v 7→ ω ∧ v
.

显然kerA = ann(ω), 且由维数公式得dimkerA = dimV − dim imA ≥ n − 1. 结

合练习82第一部分知dimA = n− 1 = p, 再由该练习的第三部分得ω可分解.
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Exercise 84

设U和W都是V的p维子空间, U有基x1, . . . , xp而W有基y1, . . . , yp. 证明U =

W当且仅当x1 ∧ · · · ∧ xp和y1 ∧ · · · ∧ yp成比例.

Solution 84

若U = W , 则将yi写成xj的线性组合并展开y1 ∧ · · · ∧ yp, 则由外积性质显然

结果将是x1 ∧ · · · ∧ xp的常数倍, 又因为y1 ∧ · · · ∧ yp线性无关, 因此结果不为零,

故y1 ∧ · · · ∧ yp是x1 ∧ · · · ∧ xp的非零常数倍, 即两者成比例.

反之, 若x1 ∧ · · · ∧ xp和y1 ∧ · · · ∧ yp成比例 (相差λ ̸= 0倍) 但U ̸= W , 则必存

在yi /∈ U . 考虑

(x1 ∧ · · · ∧ xp) ∧ yi = λ(y1 ∧ · · · ∧ yp) ∧ yi,

式子左边所含向量线性无关, 因此外积非零, 而右边含有重复的向量vi, 外积为零,

矛盾! 因此U = W .

Exercise 85

若基域F特征不为2, 设dimV ≥ 2而ω ∈
∧2(V ), 证明ω可分解当且仅当ω ∧

ω = 0.

Solution 85

若ω可分解, 显然有ω ∧ ω = 0, 只要证明反方向.

对维数用归纳法, 当dimV = 2时dim
∧2(V ) = 1, 显然所有元素都是e1 ∧ e2的

倍数, 当然可分解.

下面单独考虑dimV = 3情形, 给定ω ∈
∧2(V ), 定义

A :
V →

∧3(V )

v 7→ ω ∧ v.

因为dim
∧3(V ) = 1, 由维数公式可知dimkerA ≥ 2, 选取kerA的一组基u1, u2, 再

添加u3 ∈ V扩充成V的一组基. 将ω用这组基的外积表示:

ω = λ1u2 ∧ u3 + λ2u3 ∧ u1 + λ3u1 ∧ u2.
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由u1, u2的选取方式知ω ∧ u1 = ω ∧ u2 = 0, 进而知道λ1 = λ2 = 0. 于是ω =

λ3u1 ∧ u2是可分解的.

假设定理对于dimV ≤ n − 1的所有情形已经成立, 再来考虑dimV = n的情

形. 选取V的一组基v1, . . . , vn, 同样将ω用vi ∧ vj表示:

ω =
∑

1≤i<j≤n

aijvi ∧ vj

=
n−1∑
i=1

ainvi ∧ vn +
∑

1≤i<j≤n−1

aijvi ∧ vj

= u ∧ vn + η

其中u =
n−1∑
i=1

ainvi ∈ U := ⟨v1, . . . , vn−1⟩, 而η ∈
∧2(U).

注意到

0 = ω ∧ ω = (u ∧ vn + η) ∧ (u ∧ vn + η) = 2u ∧ η ∧ vn + η ∧ η

这是因为u ∧ vn ∧ η = η ∧ u ∧ vn (它们相差一个偶置换, 想一想为什么). 而vn不出

现在u和η中, 因此u ∧ η = 0, η ∧ η = 0.

由归纳假设知η可分解: η = u1 ∧ u2 (u1, u2 ∈ U). 于是u ∧ u1 ∧ u2 = 0. 但

是我们知道, 若干个向量外积为零当且仅当它们线性相关. 所以存在不全为零

的λ, µ1, µ2使得

λu+ µ1u1 = µ2u2 = 0.

若λ = 0, 则u1, u2线性相关, η = u1 ∧ u2 = 0. ω = u ∧ vn可分解.

若λ ̸= 0, 则u为u1和u2的线性组合. 这样ω就是u1 ∧ vn, u2 ∧ vn和u1 ∧ u2的线
性组合, 由dimV = 3情形的讨论知道ω也是可分解的.

Exercise 86 (有限阶元素)

说明向量空间V的对称代数Sym(V )连同线性映射ı : V = Sym1(V ) ↪→ Sym(V )具

有以下泛性质: 对于所有交换代数A,

{代数同态Sym(V ) → A} → Hom(V,A)

f 7→ f ◦ ı

是1-1映射. 按此说明一旦V有限维,选定V的基v1, . . . , vn,则有代数同构Sym(V ) ∼=
F [X1, . . . , Xn]映vi为Xi.

xiaxueqaq 2022-2024



82 第五章 张量积

Solution 86

f 7→ f ◦ ı显然是单的, 因为一个代数同态Sym(V ) → A完全由V的像决

定. 而f 7→ f ◦ ı也是满的, 因为一旦给定线性映射f0 : V → A, 它就自然地通

过Sym(V )上的乘法扩展到整个Sym(V )上从而给出一个f : Sym(V ) → A的代数

同态.

当V有限维时更是显然有Sym(V ) ∼= F [X1, . . . , Xn], 因为张量代数T (V ) =⊕
n≥0 V

⊗n此时正是v1, . . . , vn生成的自由代数, 取交换化之后得到多项式代数.
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Exercise 87 (有限阶元素)

怎样的2阶整数方阵A的有限次正整数次幂An等于单位阵?

Solution 87

设A =

(
a b

c d

)
, A具有特征值ω1, ω2. 由A有限阶知: A的极小多项式m(λ)整

除λn − 1, m(λ)无重根, A在复数域上可对角化, |ω1| = |ω2| = 1, detA = ±1.

又设φ(λ) = (λ − ω1)(λ − ω2)为A的特征多项式, 则由根与系数关系以及detA =

±1知ω1ω2 = ±1, ω1 + ω2为一整数.

若ω1ω2 = 1, 设ω1 = cos 2kπ
n

+ i sin 2kπ
n
, 则有ω2 = ω1 = cos 2kπ

n
− i sin 2kπ

n
.

ω1 + ω2 = 2 cos 2kπ
n
为一整数, 且 |ω1 + ω2| ≤ 2. 这有五种可能:

(i) 2 cos 2kπ
n

= 2: 则ω1 = ω2 = 1, A相似到单位阵I, 因此A = I. a = d = 1,

b = c = 0;

(ii) 2 cos 2kπ
n

= 1: 则k = 1, n = 6, a+ d = 1, ad− bc = 1, 例如

(
1 1

−1 0

)
;

(iii) 2 cos 2kπ
n

= 0: 则k = 1, n = 4, a+ d = 0, ad− bc = 1, 例如

(
0 1

−1 0

)
;

(iv) 2 cos 2kπ
n

= −1: 则k = 1, n = 3, a+ d = −1, ad− bc = 1, 例如

(
−1 1

−1 0

)
;

(v) 2 cos 2kπ
n

= −2: 则ω1 = ω2 = −1, A相似到−I, 因此A = −I, a = d =

−1, a+ d = 0.
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若ω1ω2 = −1, 则ω2 = −ω1, 这迫使ω1 + ω2 = 0. 于是ω1 = 1, ω2 = −1. 这样

就有a+ d = 0, ad− bc = −1, 例如

(
1 0

0 −1

)
.

而上面所给六种条件又是充分的, 因此我们总结GL2(Z)中有限阶元素如下:

(i) 阶为一的元素: 单位阵I, a = d = 1, b = c = 0;

(ii) 阶为二的元素: 这有两种可能, 一种是负单位阵−I, a = d = −1, b = c = 0,

另一种具有特征值±1, 满足a+ d = 0, ad− bc = −1;

(iii) 阶为三的元素: a+ d = −1, ad− bc = 1;

(iv) 阶为四的元素: a+ d = 0, ad− bc = 1;

(v) 阶为六的元素: a+ d = 1, ad− bc = 1.

Exercise 88 (置换群的表示)

求0, 1组成的整系数方阵A, B使得它们在整系数可逆方阵群中的阶都为2, 乘

积AB的阶是3.

Solution 88

考虑置换群Sn到可逆矩阵群GLn(Z)的嵌入群同态:

σ :
Sn → GLn(Z)

(i j) 7→ Pij

,

其中Pij为交换单位矩阵第i行和第j行的第一类初等方阵, 则σ良定义.

取n = 3, 则A = σ((1 2)) =


0 1 0

1 0 0

0 0 1

 , B = σ((1 3)) =


0 0 1

0 1 0

1 0 0

. 因

此BA = σ((1 2)(1 3)) = σ((1 3 2)) =


0 0 1

1 0 0

0 1 0

.

这样就有A,B均为2阶元素, 但BA是3阶元素.
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注记: 从有限群G到域F上的一般线性群GLn(F )的群同态称为G的群表示

(将群G的元素表示成矩阵形式).

Exercise 89 (万变不离其宗)

令F = Z/pZ为p阶有限域 (p为一素数). 求F上全体n阶可逆方阵的个数|GLn(F )|.

Solution 89

这是纯粹的线性代数问题.让我们来考虑如何选取一个可逆方阵A ∈ GLn(F ):

首先, A的第一列a1可以是任意非零向量, 这有pn − 1种选取方式. 其次, A的第二

列a2必须且只需选取自F
n\⟨a1⟩ (因为a2与a1线性无关当且仅当a2不落在a1生成的

线性子空间中), 所以a2有p
n − p种选法. 之后每一列ak的选取都必须且只需满

足ak /∈ ⟨a1, . . . , ak−1⟩, 于是ak有pn − pk−1种选法.

因此由乘法原理, |GLn(F )| =
∏n

i=1(p
n − pi−1).

Exercise 90 (万变不离其宗)

求一个正整数, 使得Z/5Z上的3阶上三角可逆方阵A都满足An = I.

Solution 90

答案不唯一, 以下给出一个可能的答案. 由Lagrange定理, 群中每个元素的阶

数都整除群的阶数. 而上三角可逆矩阵关于矩阵乘法的确构成一个群Tn(F ). 因

此只需要考虑计算Z/5Z上的3阶上三角可逆方阵群的阶数即可. 而注意到A是上

三角可逆方阵当且仅当A的对角线上元素均为Z/5Z中可逆元素, 对于对角线上方

元素没有任何限制. 因此|T3(Z/5Z)| = 43 · 56 = 1000000. 对任何A ∈ T3(Z/5Z) :
A1000000 = I.

注记: 也可利用练习89计算结果.

Exercise 91

令n为一正整数.
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(1) 从0到10n− 1中等概率地随机产生四个整数a, b, c, d, 求ad− bc为奇数的概率;

(2) 从0到10n− 1中等概率地随机产生四个整数a, b, c, d, 求ad− bc模5余2的概率.

Solution 91

(1) 注意到ad − bc的奇偶性只与a, b, c, d的奇偶性有关, 而每个元素为奇数和偶数

是等可能的, 在模2意义下, ad− bc为奇数等价于方阵

(
a b

c d

)
可逆. 因此我们

立刻约化到F2 = Z/2Z上二阶可逆矩阵群阶数计算上. 由练习89知|GL2(F2)| =
3 · 2 = 6. 而|M2(F2)| = 24 = 16. 因此ad− bc为奇数的概率是 6

16
= 3

8
.

(2) 同上, 我们约化到F5 = Z/5Z的计算上, 注意到det : GL2(F5) → (F5)
×是乘法

群同态,同态的核为ker det = SL2(F5). 因此ad−bc模5余2的集合是SL2(F5)的

一个陪集,且这样的陪集恰有4个 (事实上由同态基本定理: GL2(F5)/SL2(F5) ∼=
(F5)

× ∼= Z/4Z). 所以ad − bc模5余2的集合大小为1
4
|GL2(F5)| = 24·20

4
= 120,

所求概率为120
54

= 24
125

.

Exercise 92

为庆祝某校数学科学学院成立110周年, 概率系发行了一种彩票. 这种彩票

在3× 3的方格上印有取值自{0, 1, 2}的九个数. 这9个数满足排成的行列式一定不

是3的倍数且在此条件下等概率分布. 购买一张彩票1元钱, 规定若对角线下方的

三个数都是0则可以获得五十元大奖, 问购买彩票是否划算？

Solution 92

这事实上要计算有限域F3上一般线性群GL3(F3)和可逆上三角阵群T3(F3)的

大小. 这是经典的计算. 对可逆上三角阵群, 对角线上为可逆元, 对角线上方可以

任选: |T3(F3)| = (3 − 1)3 · 33. 对一般线性群, 第一列可以任取非零向量, 第二列

可以选第一列张成线性子空间外任意元素, 第三列可以选第一第二列张成线性子

空间外任意元素, 所以|GL3(F3)| = (33 − 1) · (33 − 3) · (33 − 32). 因此中奖概率为

23 · 33

26× 24× 18
=

1

52
.
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计算期望知 1
52

× 50− 1 < 0, 购买彩票不划算.

Exercise 93

证明p2阶群皆交换 (p为素数).

Solution 93

令G为一p2阶群. 考虑G对自身的共轭作用: G×G → G, g, x 7→ g−1xg, 则共

轭作用将G划分为若干轨道. 由轨道-稳定化子公式

|G| = |Orb(x)| · |StabG(x)|

知每个共轭类的大小都整除群的阶数p2, 因此每个共轭类的大小都是1, p, p2之一.

单位元e显然单独成一轨道, 因此G的类方程 (即将群阶数写为各轨道大小之和)

为

p2 = 1 + · · ·

记群的中心为Z(G), 则x ∈ Z(G)当且仅当x单独成一轨道, 当且仅当p ∤ |Orb(x)|.
因此|Z(G)|一定被p整除 (否则类方程右侧不是p的倍数), 又群的中心非空, 因

此G的中心非平凡.

注意到Z(G)⊴G,由Lagrange定理以及上面讨论知|Z(G)| = p或p2. 若|Z(G)| =
p, 则存在非中心元素x, 考虑x的稳定化子StabG(x) (即与x交换的元素), 显然x本

身和Z(G)都落在稳定化子中,于是p < |StabG(x)| ≤ p2, Lagrange定理迫使StabG(x) =

G, 即x与全群交换, 这与x是非中心元素矛盾. 所以群的中心只能是全群, 即G是

交换群.

推论: 由主理想整环上有限生成模结构定理 (特别地, 有限阿贝尔群结构定

理) 知这样的群在同构意义下只有两种, Z/p2Z和Z/pZ⊕ Z/pZ.

Exercise 94

设G为一群, H ≤ G为一子群. 则H是正规子群当且仅当H可以写成若干共轭

类轨道的(无交)并.
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Solution 94

这几乎是翻译定义. 若H是正规子群, 则∀h ∈ H, ∀g ∈ G: g−1hg ∈ H, 即H中

所有元素的共轭类都完全落在H中, 于是H是若干共轭类的并. 反之若子群H是

若干共轭类的并, 则显然有∀g ∈ G : g−1Hg = H.

Exercise 95 (Burnside引理)

若群G的类方程为20 = 1 + 4 + 5 + 5 + 5.

(1) 群G有没有5阶子群? 若有, 它是不是正规子群?

(2) 群G有没有4阶子群? 若有, 它是不是正规子群?

Solution 95

(1) 考虑大小为4的共轭类C中任意元素x, 令H = StabG(x)为全体和x交换元素

构成的子群. 由轨道-稳定化子公式知: |H| = |G|/|Orb(x)| = 20/4 = 5, 因

此G有5阶子群H, 存在性得证. 而e, x ∈ H (e ̸= x), 由Lagrange定理知⟨x⟩ =

H, 即H是x生成的循环群, x的阶为5.

注意到H中除单位元外的元素阶都为5, 而大小为4的共轭类C中恰好有4个五

阶元. 现在要说明H = {e} ∪ C, 这是因为若xi /∈ C (i ∈ {1, 2, 3, 4}), 那么xi落
在某个大小为5的共轭类中, 类似上面的讨论知道⟨xi⟩ ≤ CG(x

i) = StabG(x
i),

但左边的阶数为5, 右边的阶数为4, 这不可能.

这样就有H是共轭类{e}和C的并, 由练习94知H是正规子群.

(2) 类似的, 考虑大小为5的共轭类中元素的稳定化子, 这是一个大小为4的子群.

但任何大小为4的子群都不可能是正规子群 (因为唯一大小之和是4的一组共

轭类不包含单位元e, 不能构成群, 见练习94).

注记: 存在性可由Sylow定理立得.
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Exercise 96 (Burnside引理)

令G是一有限群, X为一有限集合, G在X上有一作用. 记|X/G|为X的轨道个
数, FixX(g) := {x ∈ X|gx = x}为g固定的集合元素. 证明以下等式:

|X/G| = 1

|G|
∑
g∈G

|FixX(g)|.

Solution 96

|X/G| =
∑

x∈X
1

|Orb(x)|

=
∑

x∈X
|StabG(x)|

|G|

= 1
|G|
∑

x∈X |StabG(x)|
= 1

|G|
∑

x∈X
∑

g∈G, gx=x 1

= 1
|G|
∑

g∈G
∑

x∈X, gx=x 1

= 1
|G|
∑

g∈G |FixX(g)|.

证明的精髓在于改变求和指标.

Exercise 97 (立方体染色计数)

给定一个正立方体, 现在要用红色和黑色两种颜色给立方体的六个面染上颜

色, 规定如果染色方案A经过立方体旋转后能得到染色方案B则将两种染色方案

视作本质相同的染色 (例如A: 给前面和后面染上红色, B: 给左边和右边染上红

色).

问有多少种本质不同的染色?

Solution 97

我们将应用上面证明的Burnside引理 (练习96). 记G为立方体的旋转变换群,

X为全体染色方案, 则本质不同的染色数等于G在X上作用的轨道数.

容易证明立方体的旋转对称群大小为24 (想一想, 为什么?), 其中有恒同变

换1个,绕面中心旋转90度6个,绕面中心旋转180度3个,绕体对角线旋转120度8个,

固定相对两条棱的旋转6个. 考虑每一个旋转变换固定多少个染色方案:
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(i) 恒同变换固定全部26种染色方案;

(ii) 绕面中心旋转90度固定23种染色方案;

(iii) 绕面中心旋转180度固定24种染色方案;

(iv) 绕体对角线旋转120度固定22种染色方案;

(v) 固定相对两条棱的旋转固定23种染色方案.

因此应用Burnside引理得:

|X/G| = (26 + 23 × 6 + 24 × 3 + 22 × 8 + 23 × 6)/24 = 10.

注记: 可以证明立方体的旋转对称群同构于S4.

练习: 七夕情人节小C想送给小X一串手串, 手串由八个珠子串成一圈, 每个

珠子可以从黑色珠子和白色珠子中选择一个. 若两串手串经过旋转和翻转之后相

同则视为同一种手串, 问一共有多少种手串?

Exercise 98

如果群G的子群H对于所有自同构φ : G → G都满足φ(H) = H, 则称之为特

征子群.

(i) 证明特征子群总是正规子群, 特征子群的特征子群仍是特征子群.

(ii) 说明群的中心ZG是特征子群, 而且群G的导出子群

G′ := ⟨aba−1b−1|a, b ∈ G⟩

也是特征子群.

(iii) 证明(GLn(F ))
′ = SLn(F ), 其中F为一个至少包含3个元素的域.
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Solution 98

(i) 注意到对任意群元素g, 我们有共轭作用引起的内自同构φg : G → G, x 7→
g−1xg, 因此∀g ∈ G : φg(H) = H蕴含H正规.

而任何G的自同构限制到特征子群H上仍是子群H的自同构.因此若K是H的

特征子群, 那么G的自同构仍然将K映到K, 所以K是G的特征子群.

(ii) 考虑自同构φ, 要说明∀z ∈ ZG, φ(z) ∈ ZG, 则只要说明∀g ∈ G : φ(z)g =

gφ(z). 由φ是自同构, 于是只要说明φ−1(φ(z)g) = φ−1(gφ(z)), 即zφ−1(g) =

φ−1(g)z. 这由z ∈ ZG是显然的.

而导出子群当然是特征子群, 因为生成元aba−1b−1在φ下的像仍是另一个生

成元φ(a)φ(b)φ(a)−1φ(b)−1.

(iii) 首先注意到(GLn(F ))
′的生成元行列式都为1, 因此(GLn(F ))

′ ⊆ SL2(F ).

反过来, 记Eij(λ) (i ̸= j)为对角线上全为1, 第i行第j列为λ的第一类初等方

阵. 那么

Lemma 1. 设F为任意域, {Eij(λ)|1 ≤ i, j ≤ n, i ̸= j, λ ∈ F}生成整
个SLn(F ).

证明. 当n = 2时, 若a ̸= 0:(
a b

c d

)
=

(
1 0

c+1
a

1

)(
1 1− a

0 1

)(
1 0

−1 1

)(
1 1 + b−1

a

0 1

)
.

这是因为ad− bc = 1, 否则b ̸= 0:

用

(
0 −1

1 0

)
=

(
1 −1

0 1

)(
1 0

1 1

)(
1 −1

0 1

)
和

(
b −a
d −c

)
=

(
a b

c d

)(
0 −1

1 0

)
化

归到前一情形.

当n ≥ 3时, 若A ∈ SLn(F )第一列除了a11外有任意的非零元素ai1 = a, 则左

乘E1i(
1−a11

a
)可以将a11变成1, 于是再通过第一类初等行变换和第一类初等

列变换可以将A消成

(
1 0T

0 B

)
的形式, 这样就化归到n − 1的情形; 若A第一

列除了a11全为0, 那么将A的第一行加到第二行就又化成了第一列除a11外有

非零元素的情形.
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通过上面的引理我们知道, 只要说明Eij(λ)可以写成aba
−1b−1的形式就可以

完成反方向的证明.

先看n = 2而|F | ≥ 3时: 选择µ ∈ F\{0, 1}:(
1 λ

0 1

)
=

(
µ 0

0 1

)(
1 λ

µ−1

0 1

)(
µ 0

0 1

)−1(
1 λ

µ−1

0 1

)−1

给出E12(λ), 而转置给出E21(λ).

再看n ≥ 3时: Eij(λ) = Eil(λ)Elj(1)Eil(−λ)Elj(−1), 其中l可以任取不同

于i, j的1到n中的整数.

所以无论哪种情形,我们都由引理有SLn(F ) ⊆ (GLn(F ))
′. 因此最终有SLn(F ) =

(GLn(F ))
′.

Exercise 99 (Iwasawa判据)

群的交换化定义为Gab = G/G′.

(i) 说明Gab交换, 而且对于任何交换群A和同态f : G → A, 存在唯一的同态f̄ :

Gab → A使得f通过Gab (即:f分解为G
/G′

−−→ Gab
f̄−→ A).

(ii) 确定S3, Q8, D2n, GLn(F )的交换化, 其中F为任意域.

(iii) 对于群G = GLn(F ), 其中F为含至少三个元素的域, 试将商同态G → Gab等

同于行列式.

Solution 99

(i) Gab显然交换, 这是因为所有的“非交换部分”aba−1b−1都被模掉了, 而f通

过Gab是因为对于任意a, b ∈ G, f(a)f(b)f(a)−1f(b)−1 = 1 (A交换). 于是

所有aba−1b−1都落在ker f中, 这导致G′ ⊆ ker f . 因此f诱导f̄ : Gab → A. 显

然f̄是唯一的.

(ii) 直接计算有(S3)ab = Z/2Z, (Q8)ab = (Z/2Z)⊕ (Z/2Z). 而

(D2n)ab =

{
Z/2Z 2 ∤ n
(Z/2Z)⊕ (Z/2Z) 2 | n

,
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这是因为στστ−1 = τ−2 (σ为反射, τ为旋转).

GLn(F ) =

{
Z/2Z F = Z/2Z, n = 2

F× otherwise
,

这是因为(GL2(Z/2Z)) ∼= S3,对剩下的情况用练习98,以及GLn(F )/SLn(F ) ∼=
F×.

(iii) 由SLn(F ) = (GLn(F ))
′以及det : GLn(F ) → F×给出GLn(F )/SLn(F ) ∼=

F×立得.

Exercise 100 (Iwasawa判据)

设群G作用在集合X上, |X| ≥ 2, 若对所有(x, y), (x′, y′) ∈ X2, 其中x ̸=
y且x′ ̸= y′, 皆存在g ∈ G使得gx = x′而gy = y′, 则称作用为双传递 (doubly

transitive)的. 以下设G双传递地作用于X, 并且记Hx = StabG(x).

(i) 证明Hx对于所有x ∈ X都是G的极大真子群: 换言之, 包含Hx的子群只

有G和Hx本身.

(ii) 说明任何正规子群N ◁G在X上的作用或者平凡, 或者传递.

(iii) (Iwasawa) 假设G作用忠实, G = G′, 而且存在x使得Hx有正规交换子群U ,

而U在G中的所有共轭生成G. 证明G为单群.

Solution 100

(i) 对于g /∈ Hx, 我们证明G = Hx ∪HxgHx.

若另一个g′ /∈ Hx, 我们来说明g
′ ∈ HxgHx. 依g, g

′的选取方式, gx, g′x ̸= x.

因此由双传递性, 存在g′′ ∈ G将(x, gx)映到(x, g′x). 由g′′x = x知g′′ ∈ Hx.

而g′′(gx) = g′x, 所以g′ ∈ g′′gHx ⊆ HxgHx. 于是确实有G = Hx ∪HxgHx.

而Hx显然是真子群 (G传递, Hx固定x). 若还有子群K包含Hx, 则选取g ∈
K\Hx. 由前面所说, G = Hx ∪ HxgHx, 但Hx, HxgHx ⊆ K, 因此G ⊆ K,

即G = K, 因此H极大.
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(ii) 假设N作用非平凡: ∃n ̸= 1, x ∈ X s.t. nx ̸= x. 对任意y, y′ ∈ X (y ̸= y′), 由

双传递性, 存在g ∈ G将(x, nx)映到(y, y′), 这样y′ = (gng−1)y且gng−1 ∈ N .

于是N的作用是传递的.

(iii) 若N ⊴G是G的一个正规子群, 令H = StabG(x). 那么NH = {nh|n ∈ N, h ∈
H}为一个包含H的G的子群 (N正规).由前面所证知道NH = H或NH = G,

且N的作用或者平凡或者传递.

如果NH = H, 那么N ⊆ H, 于是N固定x不动, N的作用只能是平凡的.

但G的作用忠实, 这迫使N = {1}.

而如果NH = G, 令U为H的正规交换子群 (注意: 一个交换子群未必是正规

的!), 且U在G中的共轭生成G. 那么由U ⊴H知道NU ⊴NH = G. 因此对于

任意g ∈ G: gUg−1 ⊆ g(NU)g−1 = NU , 于是NU包含所有U在G中的共轭,

这样就有NU = G.

所以G/N = (NU)/N ∼= U/(N ∩ U) (“Diamond Theorem”). 而U是交换的,

这一同构告诉我们G/N是交换群, 由交换化部分知识知G′ ⊆ N . 但G = G′,

因此N = G是平凡的. 总之G没有非平凡正规子群.

Exercise 101 (PSL2(F )的单性, |F | ≥ 4)

设F为域,记Z为SLn(F )的中心,按照以下步骤证明n = 2而|F | ≥ 4时PSL2(F ) :=

SL2(F )/Z为单群.

(i) 说明|F | ≥ 4时SL2(F ) = (SL2(F ))
′.

(ii) 让PSL2(F )以显然方式作用在P1(F )上. 记(x, y) ∈ F 2\{0}生成的的子空间
为(x : y). 说明这是双传递作用, 然后写下(1 : 0)的稳定化子群H.

(iii) 代入Iwasawa判据 (练习100), 推导|F | ≥ 4时PSL2(F )是单群.

Solution 101

(i) 当|F | ≥ 4时, 存在a ∈ F\{0, 1,−1}, 因此a2 ̸= 1. 而(
a 0

0 1/a

)(
1 b

0 1

)(
a 0

0 1/a

)−1(
1 b

0 1

)−1

=

(
1 b(a2 − 1)

0 1

)
,
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所以令b跑遍整个F就能给出E12(λ) (λ ∈ F ). 同理E21(λ)也能写成换位子aba
−1b−1的

形式.由引理1知SL2(F ) = (SL2(F ))
′.

(ii) 为说明PSL2(F )的作用是双传递作用, 只要说明任何(v, w) ∈ P1 × P1(v ̸=
w)都可以被映射到((1 : 0), (0 : 1))即可. 令v = (a : c), w = (b : d), 则D :=

ad− bc ̸= 0. 令A =

(
a b/D

c d/D

)
, 则A ∈ SL2(F ). 取Ā为A在PSL2(F )中的像,

则Āv = (a : c), Āw = (b/D : d/D) = (b : d). PSL2(F )的作用是双传递的.

而(1 : 0)的稳定化子群直接计算可知为

H :=

{
M

∣∣∣∣∣M =

(
λ µ

0 1/λ

)
, λ ̸= 0

}
.

(iii) 显然PSL2(F )作用忠实, 而直接计算可以知道U =

{
M

∣∣∣∣∣M =

(
1 µ

0 1

)}
∼=

F是H的正规交换子群, 并且U的共轭生成整个PSL2(F ):(
0 −1

1 0

)(
1 λ

0 1

)(
0 −1

1 0

)−1

=

(
1 0

−λ 1

)
,

(回忆引理1). 结合第一部分 (蕴含PSL2(F ) = (PSL2(F ))
′)以及Iwasawa判据

(练习100): |F | ≥ 4时PSL2(F )是单群.

注记: PSL2(Z/2Z) ∼= S3, PSL2(Z/3Z) ∼= A4都不是单群.

Exercise 102 (PSLn(F )的单性, n ≥ 3)

承上题, 设F为任意域. 按以下步骤证明n ≥ 3时PSLn(F ) := SLn(F )/Z是单

群.

(i) 说明SLn(F ) = (SLn(F ))
′.

(ii) 让PSLn(F )以显然方式作用在Pn−1(F )上. 说明这是双传递作用, 然后写

下(1 : 0 : · · · : 0)的稳定化子群H.

(iii) 代入Iwasawa判据 (练习100), 推导PSLn(F )单.
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Solution 102

(i) 注意到Eij(λ) = Eil(λ)Elj(1)Eil(λ)
−1Elj(1)

−1是换位子,而引理1说明Eij(λ)生

成SLn(F ). 于是SLn(F ) = (SLn(F ))
′.

(ii) 类似练习101中的做法可以构造线性映射将(v, w)映射到(e1, e2), 适当调整该

映射可以使得行列式为1,所以PSLn(F )在Pn−1上是双传递作用. 而稳定化子

群H中元素形如

(
a ∗
0 M

)
, 其中a ∈ F×, M ∈ GLn−1(F ), detM = 1/a.

(iii) 上面的H有自然的到PGLn−1(F )的映射: H → PGLn−1(F ),

(
a ∗
0 M

)
7→

M , 映射的核为U =

{(
1 ∗
0 In−1

)}
∼= F n−1. 这是一个H的正规交换子

群. 由第一部分知PSLn(F ) = (PSLn(F ))
′且显然PSLn(F )作用忠实. U包

含所有E1l(λ), 经共轭作用后可以得到所有El1(λ). 所以U的共轭生成整

个PSLn(F ). 由Iwasawa判据知PSLn(F )单.
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到这里, 我们一学期的高等代数II习题课就全部讲完了. 不过, 对于一个数院

的同学来说, 他的数学学习才刚刚开始. 在学期末, 一个不可避免的挑战就是期末

考试. 如果你在考试中取得了优异的成绩, 那我自然要祝贺你, 但是如果不巧 (我

是说如果), 你没有取得理想的成绩呢?

我想这也并不是一件什么了不得的事. 就在我准备这份讲义的同时, 2022年

菲尔兹奖结果揭晓: 39岁的韩裔数学家许埈珥因为他在组合数学方面引入代数几

何工具所做出的优秀结果获得了当年的菲尔兹奖. 然而回首他的学术生涯其实并

非一帆风顺: 在他刚进入首尔国立大学开始本科阶段的学习时, 他的志向是成为

一名科学记者, 而他的专业是物理与天文. 然而事实证明他的兴趣和长处并不在

此, 经常翘课导致他不得不重上了好几门课程. 许埈珥说:“当时我感到迷茫”.

事情的转机出现在他本科的第六年. 在这一年, 日本代数几何的领军人

物, 菲尔兹奖得主Hironaka到首尔国立大学访问并开设一门为期一年的代数几

何课程, 许埈珥想: 也许他可以通过听Hironaka的课与这位著名数学家混熟, 这

样Hironaka就可以成为他作为科学记者的第一个采访对象. 他总是与Hironaka共

进午餐, 从这时开始, 他才真正发现了自己的天赋所在: 数学. 在Hironaka的指导

下他完成了在首尔国立大学的硕士. 在申请博士时, 几乎所有的大学都因为他的

背景拒绝了他: 本科专业不是数学, 而且成绩单也并不出彩, 只有伊利诺斯大学

香槟分校接受了他. 在这里的第一年, 许埈珥的数学生涯一飞冲天: 他在这里解

决了悬而未决四十多年的Read猜想: 一个图的染色多项式系数绝对值总是对数

凹的. 密歇根大学邀请他去做一场关于Read猜想的报告, 报告厅里坐满了一年前

曾拒绝他的申请的教授, 一名教授极力建议一名博士后参加这场报告, 而理由是:

“三十年后你可以骄傲地告诉你的孙辈们, 你在许出名之前听过他的报告”. 这场

报告无疑是成功的, 密歇根大学在报告后马上邀请许埈珥转学到他们那. 在那
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里, 许埈珥把目光转向了Rota猜想——这是一种Read猜想的推广. 2015年, 许埈

珥和Karim Adiprasito以及Eric Katz一起解决了Rota猜想, 这项工作最终使许埈

珥获得了2022年的菲尔兹奖.

我分享这个故事是想告诉同学们, 考试成绩并不能贬低一个人的能力. 在进

入北大之前, 你们所有人都证明了自己至少在某方面拥有不平凡的能力, 偶尔的

失利并不会抹杀掉这种能力. 在2018年北京大学毕业生晚会上, 当年的中文男足

球队队长曹直说过这样一番话: “谁说十八岁的成功就不是成功？既然站上过巅

峰，还怕什么深渊无穷——退一寸有退一寸的欢喜”. 一次考试没有成功不算什

么, 人生还有很长的路要走.

所以请允许我用克林克兹的一段台词来结束这份讲义——

“与其感慨路难行, 不如马上出发.”
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