An Algorithm for Transcendental Decision Problems

Published:

This project provides a decision algorithm to trigonometric extensions. The implementation is based on MATHEMATICA 13.

Examples

For example, suppose we want to prove \((\exists t)\left((t>0)\wedge(-\frac{11}{3} \mathrm{e}^{-t} \sin (3 t)+\mathrm{e}^{-t} \cos (3 t)-1=-5 t-7 \mathrm{e}^{-2 t}+2)\right)\)

TrigExtVerify[ Exists[x, (x > 0) \[And] (-E^(-2 x) (7 - 2 E^(2 x) + 5 E^(2 x) x) == TrigExpand[-(1/3) E^-x (3 E^x - 3 Cos[3 x] + 11 Sin[3 x])])]], which returns True.

Check it out: